The direct methanol fuel cell (DMFC) is a promising power source for micro- and various portable electronic devices (mobile phones, PDAs, laptops, and multimedia equipment) with the advantages of easy fuel storage, no need for humidification, and simple design. However, a number of issues need to be resolved before DMFC commercialization, such as the methanol crossover and water crossover, which must be minimized in portable DMFCs. In the present work, a detailed experimental study on the performance of an “in-house” developed DMFC with 25cm2 of active membrane area, working near the ambient conditions is described. The influence on the DMFC performance of the methanol concentration in the fuel feed solution and of both anode and cathode flowrates was studied. Tailored membrane electrode assemblies (MEAs) were designed in order to select optimal working conditions. Different structures and combinations of gas diffusion layers (GDLs) were tested. Under the operating conditions studied it was shown that, as expected, the cell performance significantly increases with the introduction of gas diffusion layers and that carbon cloth is more efficient than carbon paper both for the anode and cathode GDLs. The results reported allow the setup of tailored MEAs enabling the cell operation at high methanol concentrations (high power densities) without sacrificing performance (i.e., achieving low methanol crossover values). The influence of the different parameters on the cell performance is explained under the light of the predictions from a previously developed one-dimensional model, coupling heat and mass transfer effects. The main gain of this work is to report DMFC detailed experimental data at near ambient temperature which are insufficient in literature. This operating condition is of special interest in portable applications.

1.
Lamy
,
C.
,
Leger
,
J. M.
, and
Srinivasan
,
S.
, 2001,
Direct Methanol Fuel Cells: From a Twentieth Century Electrochemist’s Dream to a Twenty-First Century Emerging Technology. Modern Aspects of Electrochemistry
, Vol.
34
,
J. O’M.
Bockris
,
B. E.
Conway
, and
R. E.
White
, eds.,
Kluwer Academic/Plenum
,
New York
, pp.
53
118
.
2.
Arico
,
A. S.
,
Creti
,
P.
,
Antonucci
,
P. L.
,
Cho
,
J.
,
Kim
,
H.
, and
Antonucci
,
V.
, 1998, “
Optimization of Operating Parameters of a Direct Methanol Fuel Cell and Physico-Chemical Investigation of Catalyst-Electrolyte Interface
,”
Electrochim. Acta
0013-4686,
43
, pp.
3719
3729
.
3.
Hogarth
,
M.
,
Christensen
,
P.
,
Hamnett
,
A.
, and
Shukla
,
A.
, 1997, “
The Design and Construction of High-Performance Direct Methanol Fuel Cells. 2. Vapour-Feed Systems
,”
J. Power Sources
0378-7753,
69
, pp.
125
136
.
4.
Ren
,
X.
,
Wilsonand
,
M. S.
, and
Gottesfeld
,
S.
, 1996, “
High Performance Direct Methanol Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
L12
L15
.
5.
Yang
,
C.
,
Srinivasan
,
S.
,
Arico
,
A. S.
,
Creti
,
P.
,
Baglio
,
V.
, and
Antonucci
,
V.
, 2001, “
Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature
,”
Electrochem. Solid-State Lett.
1099-0062,
4
, pp.
A31
A34
.
6.
Kunimatsu
,
M.
,
Shudo
,
T.
, and
Nakajima
,
Y.
, 2002, “
Study of Performance Improvement in a Direct Methanol Fuel Cell
,”
JSAE Rev.
0389-4304,
23
, pp.
21
26
.
7.
Nakagawa
,
N.
, and
Xiu
,
Y.
, 2003, “
Performance of a Direct Methanol Fuel Cell Operated at Atmospheric Pressure
,”
J. Power Sources
0378-7753,
118
, pp.
248
255
.
8.
Baldauf
,
M.
, and
Preidel
,
W.
, 2001, “
Experimental Results on the Direct Electrochemical Oxidation of Methanol in PEM Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
31
, pp.
781
786
.
9.
Jung
,
D. H.
,
Lee
,
C. H.
,
Kim
,
C. S.
, and
Shin
,
D. R.
, 1998, “
Performance of a Direct Methanol Polymer Electrolyte Fuel Cell
,”
J. Power Sources
0378-7753,
71
, pp.
169
173
.
10.
Ravikumar
,
M. K.
, and
Shukla
,
A. K.
, 1996, “
Effect of Methanol Crossover in a Liquid-Feed Polymer-Electrolyte Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
143
, pp.
2601
2606
.
11.
Shukla
,
A. K.
,
Christensen
,
P. A.
,
Dickinson
,
A. J.
, and
Hamnett
,
A.
, 1998, “
A Liquid-Feed Solid Polymer Electrolyte Direct Methanol Fuel Cell Operating at Near-Ambient Conditions
,”
J. Power Sources
0378-7753,
76
, pp.
54
59
.
12.
Surampudi
,
S.
,
Narayanan
,
S. R.
,
Vamos
,
E.
,
Frank
,
H.
,
Halpert
,
G.
,
LaConti
,
A.
,
Kosek
,
J.
,
Surya Prakash
,
G. K.
, and
Olah
,
G. A.
, 1994, “
Advances in Direct Oxidation Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
47
, pp.
377
385
.
13.
Ge
,
J.
, and
Liu
,
H.
, 2005, “
Experimental Studies of a DMFC
,”
J. Power Sources
0378-7753,
142
, pp.
56
69
.
14.
Zhao
,
T. S.
,
Xu
,
C.
, and
Chen
,
R.
, and
Yang
,
W. W.
, 2009, “
Mass Transport Phenomena in Direct Methanol Fuel Cells
,”
Prog. Energy Combust. Sci.
0360-1285,
35
, pp.
275
292
.
15.
Yang
,
W. W.
, and
Zhao
,
T. S.
, 2007, “
A Two Dimensional, Two-Phase Mass Transport Model for Liquid-Feed DMFCs
,”
Electrochim. Acta
0013-4686,
52
, pp.
6125
6140
.
16.
Lu
,
C. Q.
,
Wang
,
C. Y.
,
Yen
,
T. J.
, and
Zhang
,
X.
, 2004, “
Development and Characterization of a Silicon-Based Micro Direct Methanol Fuel Cell
,”
Electrochim. Acta
0013-4686,
49
, pp.
821
828
.
17.
Scott
,
K.
,
Taama
,
W. M.
,
Kramer
,
S.
,
Argyropoulos
,
P.
, and
Sundmacher
,
K.
, 1999, “
Limiting Current Behaviour of the Direct Methanol Fuel Cell
,”
Electrochim. Acta
0013-4686,
45
, pp.
945
957
.
18.
Zhang
,
J.
,
Yin
,
G. P.
,
Lai
,
Q. Z.
,
Wang
,
Z. B.
,
Cai
,
K. D.
, and
Liu
,
P.
, 2007, “
The Influence of Anode Gas Diffusion Layer on the Performance of Low Temperature DMFC
,”
J. Power Sources
0378-7753,
168
, pp.
453
458
.
19.
Gogel
,
V.
,
Frey
,
T.
,
Zhu
,
Y. S.
,
Friedrich
,
K. A.
,
Jörissen
,
L.
, and
Garche
,
J.
, 2004, “
Performance and Methanol Permeation of Direct Methanol Fuel Cells: Dependence on Operating Conditions and on Electrode Structure
,”
J. Power Sources
0378-7753,
127
, pp.
172
80
.
20.
Xu
,
C.
,
Zhao
,
T. S.
, and
Ye
,
Q.
, 2006, “
Effect of Anode Backing Layer on the Cell Performance of a Direct Methanol Fuel Cell
,”
Electrochim. Acta
0013-4686,
51
, pp.
5524
5531
.
21.
Oedegaard
,
A.
,
Hebling
,
C.
,
Schmitz
,
A.
,
Moller-Holst
,
S.
, and
Tunold
,
R.
, 2004, “
Increasing mDMFC Efficiency by Passive CO2 Bubbles Removal and Discontinuous Operation
,”
J. Power Sources
0378-7753,
127
, pp.
187
196
.
22.
Shao
,
Z. C.
,
Hsing
,
I. M.
,
Zhang
,
H. M.
, and
Yi
,
B. L.
, 2006, “
Influence of Anode Diffusion on the Performance of a Liquid Feed Direct Methanol Fuel Cell by AC Impedance Spectroscopy
,”
Int. J. Energy Res.
0363-907X,
30
, pp.
1216
1227
.
23.
Scott
,
K.
,
Taama
,
W. M.
, and
Argyropoulos
,
P.
, 1998, “
Material Aspects of the Liquid Feed Direct Methanol Fuel Cell
,”
J. Appl. Electrochem.
0021-891X,
28
, pp.
1389
1397
.
24.
Wei
,
Z.
,
Wang
,
S.
,
Yi
,
B.
,
Liu
,
J.
,
Chen
,
L.
,
Zhou
,
W.
,
Wenzheng
,
L.
, and
Xin
,
Q.
, 2002, “
Influence of Electrode Structure on the Performance of a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
106
, pp.
364
369
.
25.
Lu
,
C. Q.
,
Liu
,
F. Q.
, and
Wang
,
C. Y.
, 2005, “
Water transport through Nafion 112 membrane in DMFCs
,”
Electrochem. Solid-State Lett.
1099-0062,
8
, pp.
A1
.
26.
Liu
,
F.
,
Lu
,
G.
, and
Wang
,
C. Y.
, 2006, “
Low Crossover of Methanol and Water Through Thin Membranes in Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
153
, pp.
A543
553
.
27.
Kamarudin
,
S. K.
,
Daud
,
W. R. W.
,
Ho
,
S. L.
, and
Hasran
,
U. A.
, 2007, “
Overview on the Challenges and Developments of Micro-Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
163
, pp.
743
754
.
28.
Peled
,
E.
,
Blum
,
A.
,
Aharon
,
A.
,
Philosoph
,
M.
, and
Lavi
,
Y.
, 2003, “
Novel Approach to Recycling Water and Reducing Water Loss in DMFCs
,”
Electrochem. Solid-State Lett.
1099-0062,
6
, pp.
A268
271
.
29.
Song
,
K. Y.
,
Lee
,
H. K.
, and
Kim
,
H. T.
, 2007, “
MEA Design for Low Water Crossover in Air-Breathing DMFC
,”
Electrochim. Acta
0013-4686,
53
, pp.
637
643
.
30.
Xu
,
C.
,
Zhao
,
T. S.
, and
He
,
W. L.
, 2007, “
Effect of Cathode Gas Diffusion Layer on Water Transport and Cell Performance in Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
171
, pp.
268
274
.
31.
Oliveira
,
V. B.
,
Falcão
,
D. S.
,
Rangel
,
C. M.
, and
Pinto
,
A. M. F. R.
, 2008, “
Heat and Mass Transfer Effects in a Direct Methanol Fuel Cell: A 1D Model
,”
Int. J. Hydrogen Energy
0360-3199,
33
, pp.
3818
3828
.
32.
Aricò
,
A. S.
,
Creti
,
P.
,
Baglio
,
V.
,
Modica
,
E.
, and
Antonucci
,
V.
, 2000, “
Influence of Flow Field Design on the Performance of a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
91
, pp.
202
209
.
33.
Tüber
,
K.
,
Oedegaard
,
A.
,
Hermann
,
M.
, and
Hebling
,
C.
, 2004, “
Investigation of Fractal Flow-Fields in Portable Proton Exchange Membrane and Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
131
, pp.
175
181
.
34.
Yang
,
H.
, and
Zhao
,
T. S.
, 2005, “
Effect of Anode Flow Field Design on the Performance of Liquid Feed Direct Methanol Fuel Cells
,”
Electrochim. Acta
0013-4686,
50
, pp.
3243
3252
.
35.
Jung
,
G. B.
,
Su
,
A.
,
Tu
,
C. H.
,
Lin
,
Y. T.
,
Weng
,
F. B.
, and
Chan
,
S. H.
, 2007, “
Effects of Cathode Flow Fields on Direct Methanol Fuel Cell-Simulation Study
,”
J. Power Sources
0378-7753,
171
, pp.
212
217
.
36.
Yoshizawa
,
K.
,
Ikezone
,
K.
,
Tasaki
,
Y.
,
Kramer
,
D.
,
Lehmann
,
E. H.
, and
Sherer
,
C. C.
, 2008, “
Analysis of Gas Diffusion Layer and Flow Field Design in a PEMFC Using Neutron Radiography
,”
J. Electrochem. Soc.
0013-4651,
155
, pp.
B223
227
.
37.
Wang
,
Y.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2007, “
Elucidating Differences Between Carbon Paper and Carbon Cloth in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
0013-4686,
52
, pp.
3965
3975
.
38.
Barbir
,
F.
, 2005,
PEM Fuel Cells: Theory and Practice
,
Elsevier Academic
,
Oxford
.
39.
Yang
,
H.
,
Zhao
,
T. S.
, and
Ye
,
Q.
, 2005, “
In Situ Visualization Study of CO2 Gas Bubble Behavior in DMFC Anode Flow Fields
,”
J. Power Sources
0378-7753,
139
, pp.
79
90
.
40.
Cowart
,
J. S.
, 2005, “
An Experimental and Modelling Based Investigation Into the High Stoichiometric Flow Rates Required in Direct Methanol Fuel Cells
,”
J. Power Sources
0378-7753,
143
, pp.
30
35
.
41.
Argyropoulos
,
P.
,
Scott
,
K.
, and
Taama
,
W. M.
, 1999, “
Gas Evolution and Power Performance in Direct Methanol Fuel Cells
,”
J. Appl. Electrochem.
0021-891X,
29
, pp.
663
671
.
42.
Lu
,
G. Q.
, and
Wang
,
C. Y.
, 2004, “
Electrochemical and Flow Characterization of a Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
134
, pp.
33
40
.
You do not currently have access to this content.