A systematic study was initiated of anode-supported solid oxide fuel cells (SOFCs) with Nd2NiO4 cathodes. This type of cathode, a mixed conducting K2NiF4-type material, can be considered as a candidate for SOFC applications. In this study, the influence of (1) the presence of a Ce0.8Gd0.2O1.9 (CGO) interlayer between the electrolyte and the cathode, (2) sintering conditions, and (3) the grain size of the powder on the performance of SOFCs with Nd2NiO4 cathodes was investigated in more detail. Results from current density-voltage characteristics and permeation and gas diffusion measurements showed that the electrochemical performance was promising for SOFCs including a CGO interlayer and a Nd2NiO4 cathode (prepared with a powder with a d50 of 0.5Acm2 or 0.8μm) sintered at 1100°C or higher; current density at 800°C and 700mV between 1.2 and 1.3Acm2. The microstructure of the cathode was such that no gas diffusion problems occurred.

1.
Haanappel
,
V. A. C.
,
Mertens
,
J.
,
Rutenbeck
,
D.
,
Herzhof
,
W.
,
Sebold
,
D.
, and
Tietz
,
F.
, 2005, “
Optimisation of Processing and Microstructural Parameters to Improve the Electrochemical Performance of LSM-Based Anode-Supported SOFCs
,”
J. Power Sources
0378-7753,
141
, pp.
216
226
.
2.
Dusastre
,
V.
, and
Kilner
,
J. A.
, 1999, “
Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications
,”
Solid State Ionics
0167-2738,
126
, pp.
163
174
.
3.
Fukui
,
T.
,
Ohara
,
S.
,
Murata
,
K.
,
Yoshida
,
H.
,
Miura
,
K.
, and
Inagaki
,
T.
, 2002, “
Performance of Intermediate Temperature Solid Oxide Fuel Cells With La(Sr)Ga(Mg)O3 Electrolyte Film
,”
J. Power Sources
0378-7753,
106
, pp.
142
145
.
4.
de Haart
,
L. G. J.
,
Mayer
,
K.
,
Stimming
,
U.
, and
Vinke
,
I. C.
, 1998, “
Operation of Anode-Supported Thin Electrolyte Film Solid Oxide Fuel Cells at 800°C and Below
,”
J. Power Sources
0378-7753,
71
, pp.
302
305
.
5.
Huijsmans
,
J. P. P.
,
van Berkel
,
F. P. F.
, and
Christie
,
G. M.
, 1998, “
Intermediate Temperature SOFC—A Promise for the 21st Century
,”
J. Power Sources
0378-7753,
71
, pp.
107
110
.
6.
Maguire
,
E.
,
Gharbage
,
B.
,
Marques
,
F. M. B.
, and
Labrincha
,
J. A.
, 2000, “
Cathode Materials for Intermediate Temperature SOFCs
,”
Solid State Ionics
0167-2738,
127
, pp.
329
335
.
7.
Perry Murray
,
E.
,
Sever
,
M. J.
, and
Barnett
,
S. A.
, 2002, “
Electrochemical Performance of (La,Sr)(Co,Fe)O3-(Ce,Gd)O3 Composite Cathodes
,”
Solid State Ionics
0167-2738,
148
, pp.
27
34
.
8.
Sahibzada
,
M.
,
Steele
,
B. C. H.
,
Zheng
,
K.
,
Rudkin
,
R. A.
, and
Metcalfe
,
I. S.
, 1997, “
Development of Solid Oxide Fuel Cells Based on a Ce(Gd)O2−x Electrolyte Film for Intermediate Temperature Operation
,”
Catal. Today
0920-5861,
38
, pp.
459
466
.
9.
Boudghene Stambouli
,
A.
,
Traversa
,
E.
, 2002, “
Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy
,”
Renewable Sustainable Energy Rev.
1364-0321,
6
(
3
), pp.
295
304
.
10.
Fontaine
,
M. L.
,
Laberty-Robert
,
C.
,
Ansart
,
F.
, and
Tailhades
,
P.
, 2006, “
Composition and Porosity Graded La2−xNiO4+δ (x⩾0). Interlayers for SOFC: Control of the Microstructure Via a Sol-Gel Process
,”
J. Power Sources
0378-7753,
156
, pp.
33
38
.
11.
Boehm
,
E.
,
Bassat
,
J. M.
,
Dordor
,
P.
,
Mauvy
,
F.
,
Grenier
,
J. C.
, and
Stevens
,
P.
, 2005, “
Oxygen Diffusion and Transport Properties in Non-Stoichiometric Ln2−xNiO4+δ oxides
,”
Solid State Ionics
0167-2738,
176
, pp.
2717
2725
.
12.
Nie
,
H. W.
,
Wen
,
T. L.
,
Wang
,
S. R.
,
Wang
,
Y. S.
,
Guth
,
U.
, and
Vashook
,
V.
, 2006, “
Preparation, Thermal Expansion, Chemical Compatibility, Electrical Conductivity and Polarization of A2−αAα‵MO4 (A=Pr,Sm; A′=Sr; M=Mn,Ni; α=0.3,0.6) as a New Cathode for SOFC
,”
Solid State Ionics
0167-2738,
177
, pp.
1929
1932
.
13.
Lalanne
,
C.
,
Mauvy
,
F.
,
Bassat
,
J. M.
,
Grenier
,
J. C.
,
Dordor
,
P.
,
Pouchard
,
M.
, and
Stevens
,
P.
, 2004, “
Electrochemical Behaviour of Porous Nd2−xNiO4+δ Electrodes
,”
Proceedings of the Sixth European Solid Oxide Fuel Cells Forum
,
M.
Mogensen
, ed.,
Lucerne, Switzerland
, pp.
1351
1359
.
14.
Buchkremer
,
H. P.
,
Dieckmann
,
U.
, and
Stöver
,
D.
, 1996, “
Component Manufacturing and Stack Integration of Anode-Supported Planar SOFC System
,”
Proceedings of the Second European Solid Oxide Fuel Cell Forum
,
B.
Thorstensen
, ed.,
Oberrohrdorf, Switzerland
, pp.
221
228
.
15.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2006, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells Part II: Influence of the CGO Interlayer
,”
Solid State Ionics
0167-2738,
177
, pp.
2103
2107
.
16.
Fott
,
P.
,
Petrini
,
S.
, and
Schneider
,
P.
, 1983, “
Transport Parameters of Monodispersed Porous Catalysts
,”
Collect. Czech. Chem. Commun.
0010-0765,
48
, pp.
215
227
.
17.
Arnost
,
D.
, and
Schneider
,
P.
, 1995, “
Dynamic Transport of Multicomponent Mixtures of Gases in Porous Solids
,”
Chem. Eng. J.
0300-9467,
57
, pp.
91
99
.
18.
Rothfeld
,
L. B.
, 1963, “
Gaseous Counterdiffusion in Catalytic Pellets
,”
AIChE J.
0001-1541,
9
(
1
), pp.
19
24
.
19.
Hejtmanek
,
P.
,
Capek
,
P.
,
Solcova
,
O.
, and
Schneider
,
P.
, 2000, “
Determination of Transport Parameters of Porous Catalysts Using Unsteady Permeation of Gases
,”
Chem. Pap.
0366-6352,
54
(
4
), pp.
215
220
.
20.
Mai
,
A.
,
Haanappel
,
V. A. C.
,
Uhlenbruck
,
S.
,
Tietz
,
F.
, and
Stöver
,
D.
, 2005, “
Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells Part I: Variation of Composition
,”
Solid State Ionics
0167-2738,
176
, pp.
1341
1350
.
21.
Uchida
,
H.
,
Arisaka
,
S.
, and
Watanabe
,
M.
, 1999, “
High Performance Electrode for Medium-Temperature Solid Oxide Fuel Cells La(Sr)CoO3 Cathode With Ceria Interlayer on Zirconia Electrolyte
,”
Electrochem. Solid-State Lett.
1099-0062,
2
, pp.
428
430
.
22.
Haanappel
,
V. A. C.
,
Mertens
,
J.
, and
Mai
,
A.
, 2006, “
Performance Improvement of (La,Sr)MnO3- and (La,Sr)(Co,Fe)O3-Type Anode-Supported SOFCs
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
3
), pp.
263
270
.
23.
Mertens
,
J.
,
Haanappel
,
V. A. C.
, and
Buchkremer
,
H. P.
, 2006, “
Sintering Behaviour of (La,Sr)MnO3-Type Cathodes for Planar Anode-Supported SOFCs
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
4
), pp.
415
421
.
You do not currently have access to this content.