Abstract

Bicomponent transition metal oxide (TMO) anodes have attracted increased attention for the application in high-performance lithium-ion batteries (LIBs). In this work, MoO3-NiO/graphene (MNG) composite was fabricated by one-pot method. Results showed that ultrafine MoO3 nanosheets and NiO nanoparticles were homogeneously anchored on the graphene layers, which is benefit for short Li+ diffusion distance, fast reaction kinetics, and low volume expansion. The as-prepared MNG composite exhibited remarkable electrochemical properties as lithium-ion battery anodes with high specific capacities of 1164 mAh/g at 100 mA/g after 50 cycles and 946.9 mAh/g at 1000 mA/g after 180 cycles. This work indicates that the MNG composite would be a promising anode material for high-performance LIBs.

References

1.
Zhao
,
Y.
,
Li
,
X. F.
,
Yan
,
B.
,
Xiong
,
D.
,
Li
,
D.
,
Lawes
,
S.
, and
Sun
,
X.
,
2016
, “
Recent Developments and Understanding of Novel Mixed Transition-Metal Oxides as Anodes in Lithium Ion Batteries
,”
Adv. Energy Mater.
,
6
(
8
), p.
1502175
. 10.1002/aenm.201502175
2.
Zhao
,
X.
,
Jia
,
W.
,
Wu
,
X.
,
Lv
,
Y.
,
Qiu
,
J.
,
Guo
,
J.
,
Wang
,
X.
,
Jia
,
D.
,
Yan
,
J.
, and
Wu
,
D.
,
2020
, “
Ultrafine MoO3 Anchored in Coal-Based Carbon Nanofibers as Anode for Advanced Lithium-Ion Batteries
,”
Carbon
,
156
, pp.
445
452
. 10.1016/j.carbon.2019.09.065
3.
Naresh
,
N.
,
Jena
,
P.
, and
Satyanarayana
,
N.
,
2019
, “
Facile Synthesis of MoO3/rGO Nanocomposite as Anode Materials for High Performance Lithium-Ion Battery Applications
,”
J. Alloy. Compd.
,
810
, p.
151920
. 10.1016/j.jallcom.2019.151920
4.
Pan
,
Y.
,
Zeng
,
W.
,
Hu
,
R.
,
Li
,
B.
,
Wang
,
G.
, and
Li
,
Q.
,
2019
, “
Investigation of Cu Doped Flake-NiO as an Anode Material for Lithium Ion Batteries
,”
RSC Adv.
,
9
(
62
), pp.
35948
35956
. 10.1039/C9RA05618A
5.
Jiang
,
Z.
,
Liu
,
C.
,
Zhang
,
L.
,
Wei
,
T.
,
Jiang
,
H.
,
Zhou
,
J.
,
Shi
,
M.
,
Liang
,
S.
,
Su
,
Z.
, and
Fan
,
Z.
,
2019
, “
Ultra-small NiO Nanoparticles Anchored on Nitrogen-Doped Carbon Flowers Through Strong Chemical Bonding for High-Performance Lithium-Ion Batteries
,”
J. Power Sources
,
441
, p.
227182
. 10.1016/j.jpowsour.2019.227182
6.
Teng
,
Y.
,
Mo
,
M.
,
Li
,
Y.
,
Xue
,
J.
, and
Zhao
,
H.
,
2018
, “
Amorphous Carbon-Coated ZnO Porous Nanosheets: Facile Fabrication and Application in Lithium-and Sodium-Ion Batteries
,”
J. Alloy. Compd.
,
744
, pp.
712
720
. 10.1016/j.jallcom.2018.01.191
7.
Cao
,
Z.
, and
Ma
,
X.
,
2020
, “
Encapsulated Fe3O4 Into Tubular Mesoporous Carbon as a Superior Performance Anode Material for Lithium-Ion Batteries
,”
J. Alloy. Compd.
,
815
, p.
152542
. 10.1016/j.jallcom.2019.152542
8.
Wang
,
P.
,
Cheng
,
Z.
,
Lv
,
G.
,
Qu
,
L.
, and
Zhao
,
Y.
,
2018
, “
Coupling Interconnected MoO3/WO3 Nanosheets With a Graphene Framework as a Highly Efficient Anode for Lithium-Ion Batteries
,”
Nanoscale
,
10
(
1
), pp.
396
402
. 10.1039/C7NR07849H
9.
Li
,
J.
,
Yan
,
D.
,
Hou
,
S.
,
Lu
,
T.
,
Yao
,
Y.
,
Chua
,
D.
, and
Pan
,
L.
,
2018
, “
Metal-Organic Frameworks Derived Yolk-Shell ZnO/NiO Microspheres as High-Performance Anode Materials for Lithium-Ion Batteries
,”
Chem. Eng. J.
,
335
, pp.
579
589
. 10.1016/j.cej.2017.10.183
10.
Sultana
,
I.
,
Rahman
,
M.
,
Ramireddy
,
T.
,
Sharma
,
N.
,
Poddar
,
D.
,
Khalid
,
A.
,
Zhang
,
H.
,
Chen
,
Y.
, and
Glushenkov
,
A.
,
2015
, “
Understanding Structure–Function Relationship in Hybrid Co3O4–Fe2O3/C Lithium-Ion Battery Electrodes
,”
ACS Appl. Mater. Inter.
,
7
(
37
), pp.
20736
20744
. 10.1021/acsami.5b05658
11.
Shi
,
W.
,
Zhang
,
Y.
,
Key
,
J.
, and
Shen
,
P.
,
2018
, “
Three-dimensional Graphene Sheets With NiO Nanobelt Outgrowths for Enhanced Capacity and Long Term High Rate Cycling Li-Ion Battery Anode Material
,”
J. Power Sources
,
379
, pp.
362
370
. 10.1016/j.jpowsour.2018.01.025
12.
Teng
,
Y.
,
Zhao
,
H.
,
Zhang
,
Z.
,
Li
,
Z.
,
Xia
,
Q.
,
Zhang
,
Y.
,
Zhao
,
L.
,
Du
,
X.
,
Du
,
Z.
,
Lv
,
P.
, and
Świerczek
,
K.
,
2016
, “
MoS2 Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes
,”
ACS Nano
,
10
(
9
), pp.
8526
8535
. 10.1021/acsnano.6b03683
13.
Teng
,
Y.
,
Zhao
,
H.
,
Li
,
Y.
, and
Liu
,
H.
,
2019
, “
Self-Assembly of Flower-Like MoO3-NiO Microspheres With Carbon Coating as High-Performance Anode Material for Lithium-Ion Batteries
,”
Mater. Lett.
,
246
, pp.
141
143
. 10.1016/j.matlet.2019.03.076
14.
Li
,
G.
,
Li
,
Y.
,
Chen
,
J.
,
Zhao
,
P.
,
Li
,
D.
,
Dong
,
Y.
, and
Zhang
,
L.
,
2017
, “
Synthesis and Research of Egg Shell-Yolk NiO/C Porous Composites as Lithium-Ion Battery Anode Material
,”
Electrochim. Acta
,
245
, pp.
941
948
. 10.1016/j.electacta.2017.06.039
15.
Jung
,
Y.
,
Lee
,
S.
,
Ahn
,
D.
,
Dillon
,
A.
, and
Lee
,
S.
,
2009
, “
Electrochemical Reactivity of Ball-Milled MoO3-y as Anode Materials for Lithium-Ion Batteries
,”
J. Power Sources
,
188
(
1
), pp.
286
291
. 10.1016/j.jpowsour.2008.11.125
16.
Xia
,
Q.
,
Zhao
,
H.
,
Teng
,
Y.
,
Du
,
Z.
,
Wang
,
J.
, and
Zhang
,
T.
,
2015
, “
Synthesis of NiO/Ni Nanocomposite Anode Materials for High Rate Lithium-Ion Batteries
,”
Mater. Lett.
,
142
, pp.
67
70
. 10.1016/j.matlet.2014.11.142
17.
Zeng
,
W.
,
Zhang
,
G.
,
Hou
,
S.
,
Wang
,
T.
, and
Duan
,
H.
,
2015
, “
Facile Synthesis of Graphene@NiO/MoO3 Composite Nanosheet Arrays for High-Performance Supercapacitors
,”
Electrochim. Acta
,
151
, pp.
510
516
. 10.1016/j.electacta.2014.11.088
18.
Zeng
,
Z.
,
Zhao
,
H.
,
Lv
,
P.
,
Zhang
,
Z.
,
Wang
,
J.
, and
Xia
,
Q.
,
2015
, “
Electrochemical Properties of Iron Oxides/Carbon Nanotubes as Anode Material for Lithium Ion Batteries
,”
J. Power Sources
,
274
, pp.
1091
1099
. 10.1016/j.jpowsour.2014.10.181
You do not currently have access to this content.