Abstract

Temperature is a significant factor affecting performance and safety of energy storage systems such as battery packs. How to design a reliable battery thermal management system (BTMS) is still a hot issue at present. Most of the past researches have focused on methods of reducing temperature rise. This paper mainly studies how to reduce the temperature deviation of the battery pack while ensuring heat dissipation conditions. This paper designs a mini-channel liquid cooling BTMS with a side cover to improve heat transfer capacity and thermal uniformity in battery packs. By analyzing different side cover materials, cooling water temperature, and water channel structure, the influence of different parameters on battery heat dissipation and uniformity is obtained. The main findings are: (1) the presence of the side cover can effectively reduce the maximum temperature and temperature deviation, and the material with high thermal conductivity is more likely to dissipate heat, (2) The increase of cooling water inlet temperature can improve temperature uniformity, and (3) When the cross-sectional area is fixed, as the channel depth increases, the temperature deviation gradually decreases.

References

1.
Feng
,
X. N.
,
Ouyang
,
M. G.
,
Liu
,
X.
,
Lu
,
L. G.
,
Xia
,
Y.
, and
He
,
X. M.
,
2018
, “
Thermal Runaway Mechanism of Lithium ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.
2.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2019
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
, pp.
192
212
.
3.
Wu
,
W. X.
,
Wang
,
S. F.
,
Wu
,
W.
,
Chen
,
K.
,
Hong
,
S. H.
, and
Lai
,
Y. X.
,
2019
, “
A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management
,”
Energ. Convers Manage
,
182
, pp.
262
281
.
4.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
,
Peng
,
X.
,
Le Phung
,
M. L.
,
Tran
,
V. M.
, and
Gao
,
L.
,
2020
, “
Intelligent Optimization Methodology of Battery Pack for Electric Vehicles: A Multidisciplinary Perspective
,”
Int. J. Energ. Res.
,
44
(
12
), pp.
9686
9706
.
5.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
, and
Gao
,
L.
,
2021
, “
Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021015
.
6.
Zhang
,
Y.
,
Chen
,
S.
,
Shahin
,
M.
,
Niu
,
X.
,
Gao
,
L.
,
Chin
,
C. M. M.
,
Bao
,
N.
,
Wang
,
C. T.
,
Garg
,
A.
, and
Goyal
,
A.
,
2020
, “
Multi-objective Optimization of Lithium-Ion Battery Pack Casing for Electric Vehicles: Key Role of Materials Design and Their Influence
,”
Int. J. Energ. Res.
,
44
(
12
), pp.
9414
9437
.
7.
Garg
,
A.
,
Yun
,
L.
,
Shaosen
,
S.
,
Goya
,
A.
,
Niu
,
X.
,
Gao
,
L.
,
Bhalerao
,
Y.
, and
Panda
,
B.
,
2019
, “
A Combined Experimental-Numerical Framework for Residual Energy Determination in Spent Lithium-Ion Battery Packs
,”
Int. J. Energ. Res.
,
43
(
9
), pp.
4390
4402
.
8.
Shim
,
J.
,
Kostecki
,
R.
,
Richardson
,
T.
,
Song
,
X.
, and
Striebel
,
K. A.
,
2002
, “
Electrochemical Analysis for Cycle Performance and Capacity Fading of a Lithium-Ion Battery Cycled at Elevated Temperature
,”
J. Power Sources
,
112
(
1
), pp.
222
230
.
9.
Samadani
,
E.
,
Mastali
,
M.
,
Farhad
,
S.
,
Fraser
,
R. A.
, and
Fowler
,
M.
,
2016
, “
Li-ion Battery Performance and Degradation in Electric Vehicles Under Different Usage Scenarios
,”
Int. J. Energ. Res.
,
40
(
3
), pp.
379
392
.
10.
Pesaran
,
A. A.
,
Burch
,
S.
, and
Keyser
,
M.
,
1999
, “
An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs
,”
Vtms 4: Vehicle Therm Manage Syst
, pp.
331
346
.
11.
Pesaran
,
A. A.
,
2002
, “
Battery Thermal Models for Hybrid Vehicle Simulations
,”
J. Power Sources
,
110
(
2
), pp.
377
382
.
12.
Xun
,
J. Z.
,
Liu
,
R.
, and
Jiao
,
K.
,
2013
, “
Numerical and Analytical Modeling of Lithium Ion Battery Thermal Behaviors with Different Cooling Designs
,”
J Power Sources
,
233
, pp.
47
61
.
13.
Li
,
W.
,
Xiao
,
M.
,
Peng
,
X. B.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
A Surrogate Thermal Modeling and Parametric Optimization of Battery Pack With Air Cooling for EVs
,”
Appl. Therm. Eng.
,
147
, pp.
90
100
.
14.
Wang
,
T.
,
Tseng
,
K. J.
,
Zhao
,
J. Y.
, and
Wei
,
Z. B.
,
2014
, “
Thermal Investigation of Lithium-Ion Battery Module With Different Cell Arrangement Structures and Forced Air-Cooling Strategies
,”
Appl. Energ.
,
134
, pp.
229
238
.
15.
Yang
,
N. X.
,
Zhang
,
X. W.
,
Li
,
G. J.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
.
16.
Feng
,
L. Y.
,
Zhou
,
S.
,
Li
,
Y. C.
,
Wang
,
Y.
,
Zhao
,
Q.
,
Luo
,
C. H.
,
Wang
,
G. X.
, and
Yan
,
K. P.
,
2018
, “
Experimental Investigation of Thermal and Strain Management for Lithium-Ion Battery Pack in Heat Pipe Cooling
,”
J. Energy Storage
,
16
, pp.
84
92
.
17.
Al Hallaj
,
S.
, and
Selman
,
J. R.
,
2000
, “
A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material
,”
J. Electrochem. Soc.
,
147
(
9
), pp.
3231
3236
.
18.
Rao
,
Z. H.
,
Wang
,
Q. C.
, and
Huang
,
C. L.
,
2016
, “
Investigation of the Thermal Performance of Phase Change Material/Mini-channel Coupled Battery Thermal Management System
,”
Appl. Energ.
,
164
, pp.
659
669
.
19.
Karimi
,
G.
,
Azizi
,
M.
, and
Babapoor
,
A.
,
2016
, “
Experimental Study of a Cylindrical Lithium Ion Battery Thermal Management Using Phase Change Material Composites
,”
J. Energy Storage
,
8
, pp.
168
174
.
20.
Pesaran
,
A. A.
,
2001
, “
Battery Thermal Management in EV and HEVs: Issues and Solutions
,”
Battery Man
,
43
(
5
), pp.
34
49
.
21.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-channel Cold Plate
,”
Energ. Convers Manage
,
89
, pp.
387
395
.
22.
Jarrett
,
A.
, and
Kim
,
I. Y.
,
2011
, “
Design Optimization of Electric Vehicle Battery Cooling Plates for Thermal Performance
,”
J. Power Sources
,
196
(
23
), pp.
10359
10368
.
23.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Experimental and Theoretical Investigation of Temperature Distributions in a Prismatic Lithium-Ion Battery
,”
Int. J. Therm. Sci
,
99
, pp.
204
212
.
24.
Lan
,
C. J.
,
Xu
,
J.
,
Qiao
,
Y.
, and
Ma
,
Y. B.
,
2016
, “
Thermal Management for High Power Lithium-Ion Battery by Minichannel Aluminum Tubes
,”
Appl. Therm. Eng.
,
101
, pp.
284
292
.
25.
Li
,
W.
,
Peng
,
X. B.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
Multi-objective Design Optimization for Mini-channel Cooling Battery Thermal Management System in an Electric Vehicle
,”
Int. J. Energ. Res.
,
43
(
8
), pp.
3668
3680
.
26.
An
,
Z.
,
Shah
,
K.
,
Jia
,
L.
, and
Ma
,
Y.
,
2019
, “
A Parametric Study for Optimization of Minichannel Based Battery Thermal Management System
,”
Appl. Therm. Eng.
,
154
, pp.
593
601
.
27.
Sheng
,
L.
,
Su
,
L.
,
Zhang
,
H.
,
Li
,
K.
,
Fang
,
Y. D.
,
Ye
,
W.
, and
Fang
,
Y.
,
2019
, “
Numerical Investigation on a Lithium ion Battery Thermal Management Utilizing a Serpentine-Channel Liquid Cooling Plate Exchanger
,”
Int. J. Heat Mass. Tran.
,
141
, pp.
658
668
.
28.
J
,
E.
,
Han
,
Q.
,
Qiu
,
D. D.
,
Zhu
,
A.
,
Deng
,
H.
,
Chen
,
Y. W.
,
Zhao
,
J. W.
,
Zuo
,
X. H.
,
Wang
,
W.
,
Chen
,
H. C.
,
and Peng
,
J. M.
, and
G
,
Q.
,
2018
, “
Orthogonal Experimental Design of Liquid-Cooling Structure on the Cooling Effect of a Liquid-Cooled Battery Thermal Management System
,”
Appl. Therm. Eng.
,
132
, pp.
508
520
.
29.
Lin
,
C. J.
,
Xu
,
S. C.
,
Chang
,
G. F.
, and
Liu
,
J. L.
,
2015
, “
Experiment and Simulation of a LiFePO4 Battery Pack With a Passive Thermal Management System Using Composite Phase Change Material and Graphite Sheets
,”
J. Power Sources
,
275
, pp.
742
749
.
30.
Bernardi
,
D.
,
Pawlikowski
,
E.
, and
Newman
,
J.
,
1985
, “
A General Energy Balance for Battery Systems
,”
J. Electrochem. Soc.
,
132
(
1
), pp.
5
12
.
31.
Sato
,
N.
,
2001
, “
Thermal Behavior Analysis of Lithium-Ion Batteries for Electric and Hybrid Vehicles
,”
J. Power Sources
,
99
(
1–2
), pp.
70
77
.
32.
Ma
,
S.
,
Jiang
,
M. D.
,
Tao
,
P.
,
Song
,
C. Y.
,
Wu
,
J. B.
,
Wang
,
J.
,
Deng
,
T.
, and
Shang
,
W.
,
2018
, “
Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review
,”
Prog. Nat. Sci-Mater.
,
28
(
6
), pp.
653
666
.
33.
Qian
,
Z.
,
Li
,
Y. M.
, and
Rao
,
Z. H.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-channel Cooling
,”
Energ. Convers Manage
,
126
, pp.
622
631
.
34.
Srinivaas
,
S.
,
Li
,
W.
,
Garg
,
A.
,
Peng
,
X. B.
, and
Gao
,
L.
,
2020
, “
Battery Thermal Management System Design: Role of Influence of Nanofluids, Flow Directions, and Channels
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021110
.
35.
Patil
,
M. S.
,
Seo
,
J.-H.
,
Panchal
,
S.
,
Jee
,
S.-W.
, and
Lee
,
M.-Y.
,
2020
, “
Investigation on Thermal Performance of Water-Cooled Li-Ion Pouch Cell and Pack at High Discharge Rate With U-Turn Type Microchannel Cold Plate
,”
Int. J. Heat Mass. Tran.
,
155
, p.
119728
.
36.
Rao
,
Z. H.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y. M.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
.
37.
Yang
,
W.
,
Zhou
,
F.
,
Zhou
,
H.
,
Wang
,
Q.
, and
Kong
,
J.
,
2020
, “
Thermal Performance of Cylindrical Lithium-Ion Battery Thermal Management System Integrated With Mini-channel Liquid Cooling and Air Cooling
,”
Appl. Therm. Eng.
,
175
, p.
115331
.
38.
Zhang
,
F.
,
Lin
,
A.
,
Wang
,
P.
, and
Liu
,
P.
,
2021
, “
Optimization Design of a Parallel Air-Cooled Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
182
, p.
116062
.
39.
Monika
,
K.
,
Chakraborty
,
C.
,
Roy
,
S.
,
Dinda
,
S.
,
Singh
,
S. A.
, and
Datta
,
S. P.
,
2021
, “
Parametric Investigation to Optimize the Thermal Management of Pouch Type Lithium-Ion Batteries With Mini-channel Cold Plates
,”
Int. J. Heat Mass Tran.
,
164
, p.
120568
.
You do not currently have access to this content.