Abstract

We study through extensive finite element analysis the lithium diffusion in small elements of Si anodes under the forms of spheres, rods, and circular disks for Li-ion batteries. Elastoplastic properties of the amorphous silicon are assumed to be lithium concentration-dependent. Effects of the normalized flux of Li-ions on the lithium concentrations, stresses, and total equivalent plastic strains are considered. Effects of the disk's thickness are also included. At a given normalized flux, the heterogeneity of the lithiation, stresses, and plastic deformation increases in the order: disk, sphere, and rod. The thinner disk the better performance is. Below a critical value of the normalized flux of Li-ions, silicon spheres and disks exhibit linear elasticity and homogeneous distribution of Li-ions, whereas silicon rods undergo always plastic deformation after lithiation. When the radii of these three structures are smaller than several micrometers and the normalized flux is taken as 95% of their critical value, the charge time falls in the range from minutes to several hours. Our findings will help to optimize the charge and geometrical parameters for silicon anodes.

References

1.
Obrovac
,
M.
,
Christensen
,
L.
,
Le
,
D. B.
, and
Dahn
,
J.
,
2007
, “
Alloy Design for Lithium-Ion Battery Anodes
,”
J. Electrochem. Soc.
,
154
(
9
), pp.
A849
A855
. 10.1149/1.2752985
2.
Obrovac
,
M.
, and
Christensen
,
L.
,
2004
, “
Structural Changes in Silicon Anodes During Lithium Insertion/Extraction
,”
Electrochem. Solid-State Lett.
,
7
(
5
), pp.
A93
A96
. 10.1149/1.1652421
3.
Noel
,
M.
, and
Suryanarayanan
,
V.
,
2002
, “
Role of Carbon Host Lattices in Li-Ion Intercalation/De-Intercalation Processes
,”
J. Power Sources
,
111
(
2
), pp.
193
209
. 10.1016/S0378-7753(02)00308-7
4.
Dahn
,
J. R.
,
Zheng
,
T.
,
Liu
,
Y.
, and
Xue
,
J.
,
1995
, “
Mechanisms for Lithium Insertion in Carbonaceous Materials
,”
Science
,
270
(
5236
), p.
590
. 10.1126/science.270.5236.590
5.
Mahmood
,
N.
,
Tang
,
T.
, and
Hou
,
Y.
,
2016
, “
Nanostructured Anode Materials for Lithium Ion Batteries: Progress, Challenge and Perspective
,”
Adv. Energy Mater.
,
6
(
17
), pp.
1
22
. 10.1002/aenm.201600374
6.
Li
,
X.
,
Chen
,
Y.
,
Huang
,
H.
,
Mai
,
Y.-W.
, and
Zhou
,
L.
,
2016
, “
Electrospun Carbon-Based Nanostructured Electrodes for Advanced Energy Storage—A Review
,”
Energy Storage Mater.
,
5
, pp.
58
92
. 10.1016/j.ensm.2016.06.002
7.
Balogun
,
M.-S.
,
Qiu
,
W.
,
Luo
,
Y.
,
Meng
,
H.
,
Mai
,
W.
,
Onasanya
,
A.
,
Olaniyi
,
T. K.
, and
Tong
,
Y.
,
2016
, “
A Review of the Development of Full Cell Lithium-Ion Batteries: The Impact of Nanostructured Anode Materials
,”
Nano Res.
,
9
(
10
), pp.
2823
2851
. 10.1007/s12274-016-1171-1
8.
Reddy
,
M.
,
Subba Rao
,
G.
, and
Chowdari
,
B.
,
2013
, “
Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries
,”
Chem. Rev.
,
113
(
7
), pp.
5364
5457
. 10.1021/cr3001884
9.
Park
,
C.-M.
,
Kim
,
J.-H.
,
Kim
,
H.
, and
Sohn
,
H.-J.
,
2010
, “
Li-Alloy Based Anode Materials for Li Secondary Batteries
,”
Chem. Soc. Rev.
,
39
(
8
), pp.
3115
3141
. 10.1039/b919877f
10.
Liu
,
X. H.
,
Zhong
,
L.
,
Huang
,
S.
,
Mao
,
S. X.
,
Zhu
,
T.
, and
Huang
,
J. Y.
,
2012
, “
Size-Dependent Fracture of Silicon Nanoparticles During Lithiation
,”
ACS Nano
,
6
(
2
), pp.
1522
1531
. 10.1021/nn204476h
11.
Beattie
,
S. D.
,
Larcher
,
D.
,
Morcrette
,
M.
,
Simon
,
B.
, and
Tarascon
,
J.-M.
,
2008
, “
Si Electrodes for Li-Ion Batteries—A New Way to Look at an Old Problem
,”
J. Electrochem. Soc.
,
155
(
2
), pp.
A158
A163
. 10.1149/1.2817828
12.
Chen
,
Z.
,
Christensen
,
L.
, and
Dahn
,
J.
,
2003
, “
Large-Volume-Change Electrodes for Li-Ion Batteries of Amorphous Alloy Particles Held by Elastomeric Tethers
,”
Electrochem. Commun.
,
5
(
11
), pp.
919
923
. 10.1016/j.elecom.2003.08.017
13.
McDowell
,
M. T.
,
Xia
,
S.
, and
Zhu
,
T.
,
2016
, “
The Mechanics of Large-Volume-Change Transformations in High-Capacity Battery Materials
,”
Extreme Mech. Lett.
,
9
(
Part 3
), pp.
480
494
. 10.1016/j.eml.2016.03.004
14.
Liu
,
X. H.
,
Zheng
,
H.
,
Zhong
,
L.
,
Huang
,
S.
,
Karki
,
K.
,
Zhang
,
L. Q.
,
Liu
,
Y.
,
Kushima
,
A.
,
Liang
,
W. T.
, and
Wang
,
J. W.
,
2011
, “
Anisotropic Swelling and Fracture of Silicon Nanowires During Lithiation
,”
Nano Lett.
,
11
(
8
), pp.
3312
3318
. 10.1021/nl201684d
15.
McDowell
,
M. T.
,
Lee
,
S. W.
,
Harris
,
J. T.
,
Korgel
,
B. A.
,
Wang
,
C.
,
Nix
,
W. D.
, and
Cui
,
Y.
,
2013
, “
In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres
,”
Nano Lett.
,
13
(
2
), pp.
758
764
. 10.1021/nl3044508
16.
Berla
,
L. A.
,
Lee
,
S. W.
,
Ryu
,
I.
,
Cui
,
Y.
, and
Nix
,
W. D.
,
2014
, “
Robustness of Amorphous Silicon During the Initial Lithiation/Delithiation Cycle
,”
J. Power Sources
,
258
, pp.
253
259
. 10.1016/j.jpowsour.2014.02.032
17.
Bucci
,
G.
,
Nadimpalli
,
S. P.
,
Sethuraman
,
V. A.
,
Bower
,
A. F.
, and
Guduru
,
P. R.
,
2014
, “
Measurement and Modeling of the Mechanical and Electrochemical Response of Amorphous Si Thin Film Electrodes During Cyclic Lithiation
,”
J. Mech. Phys. Solids
,
62
(
1
), pp.
276
294
. 10.1016/j.jmps.2013.10.005
18.
Sethuraman
,
V. A.
,
Chon
,
M. J.
,
Shimshak
,
M.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2010
, “
In Situ Measurements of Stress Evolution in Silicon Thin Films During Electrochemical Lithiation and Delithiation
,”
J. Power Sources
,
195
(
15
), pp.
5062
5066
. 10.1016/j.jpowsour.2010.02.013
19.
Ding
,
N.
,
Xu
,
J.
,
Yao
,
Y.
,
Wegner
,
G.
,
Fang
,
X.
,
Chen
,
C.
, and
Lieberwirth
,
I.
,
2009
, “
Determination of the Diffusion Coefficient of Lithium Ions in Nano-Si
,”
Solid State Ionics
,
180
(
2
), pp.
222
225
. 10.1016/j.ssi.2008.12.015
20.
Xia
,
H.
,
Tang
,
S.
, and
Lu
,
L.
,
2007
, “
Properties of Amorphous Si Thin Film Anodes Prepared by Pulsed Laser Deposition
,”
Mater. Res. Bull.
,
42
(
7
), pp.
1301
1309
. 10.1016/j.materresbull.2006.10.007
21.
Xie
,
J.
,
Imanishi
,
N.
,
Zhang
,
T.
,
Hirano
,
A.
,
Takeda
,
Y.
, and
Yamamoto
,
O.
,
2010
, “
Li-Ion Diffusion in Amorphous Si Films Prepared by RF Magnetron Sputtering: A Comparison of Using Liquid and Polymer Electrolytes
,”
Mater. Chem. Phys.
,
120
(
2–3
), pp.
421
425
. 10.1016/j.matchemphys.2009.11.031
22.
Li
,
J.
,
Xiao
,
X.
,
Yang
,
F.
,
Verbrugge
,
M. W.
, and
Cheng
,
Y.-T.
,
2011
, “
Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction
,”
J. Phys. Chem. C
,
116
(
1
), pp.
1472
1478
. 10.1021/jp207919q
23.
Zhao
,
K.
,
Pharr
,
M.
,
Cai
,
S.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge
,”
J. Am. Ceram. Soc.
,
94
(
s1
), pp.
s226
s235
. 10.1111/j.1551-2916.2011.04432.x
24.
Bower
,
A. F.
,
Guduru
,
P. R.
, and
Sethuraman
,
V. A.
,
2011
, “
A Finite Strain Model of Stress, Diffusion, Plastic Flow, and Electrochemical Reactions in a Lithium-Ion Half-Cell
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
804
828
. 10.1016/j.jmps.2011.01.003
25.
Chew
,
H. B.
,
Hou
,
B.
,
Wang
,
X.
, and
Xia
,
S.
,
2014
, “
Cracking Mechanisms in Lithiated Silicon Thin Film Electrodes
,”
Int. J. Solids Struct.
,
51
(
23
), pp.
4176
4187
. 10.1016/j.ijsolstr.2014.08.008
26.
Pal
,
S.
,
Damle
,
S. S.
,
Kumta
,
P. N.
, and
Maiti
,
S.
,
2013
, “
Modeling of Lithium Segregation Induced Delamination of a-Si Thin Film Anode in Li-Ion Batteries
,”
Comput. Mater. Sci.
,
79
, pp.
877
887
. 10.1016/j.commatsci.2013.06.051
27.
Liu
,
M.
,
2015
, “
Finite Element Analysis of Lithiation-Induced Decohesion of a Silicon Thin Film Adhesively Bonded to a Rigid Substrate Under Potentiostatic Operation
,”
Int. J. Solids Struct.
,
67
, pp.
263
271
. 10.1016/j.ijsolstr.2015.04.026
28.
Wang
,
M.
, and
Xiao
,
X.
,
2016
, “
Investigation of the Chemo-Mechanical Coupling in Lithiation/Delithiation of Amorphous Si Through Simulations of Si Thin Films and Si Nanospheres
,”
J. Power Sources
,
326
, pp.
365
376
. 10.1016/j.jpowsour.2016.07.011
29.
Wang
,
H.
,
Nadimpalli
,
S. P.
, and
Shenoy
,
V. B.
,
2016
, “
Inelastic Shape Changes of Silicon Particles and Stress Evolution at Binder/Particle Interface in a Composite Electrode During Lithiation/Delithiation Cycling
,”
Extreme Mech. Lett.
,
9
(
3
), pp.
430
438
. 10.1016/j.eml.2016.03.020
30.
Xu
,
R.
, and
Zhao
,
K.
,
2016
, “
Mechanical Interactions Regulated Kinetics and Morphology of Composite Electrodes in Li-Ion Batteries
,”
Extreme Mech. Lett.
,
8
, pp.
13
21
. 10.1016/j.eml.2015.10.004
31.
Wang
,
M.
,
Xiao
,
X.
, and
Huang
,
X.
,
2016
, “
Study of Lithium Diffusivity in Amorphous Silicon Via Finite Element Analysis
,”
J. Power Sources
,
307
, pp.
77
85
. 10.1016/j.jpowsour.2015.12.082
32.
Di Leo
,
C. V.
,
Rejovitzky
,
E.
, and
Anand
,
L.
,
2015
, “
Diffusion–Deformation Theory for Amorphous Silicon Anodes: The Role of Plastic Deformation on Electrochemical Performance
,”
Int. J. Solids Struct.
,
67
, pp.
283
296
. 10.1016/j.ijsolstr.2015.04.028
33.
Cui
,
Z.
,
Gao
,
F.
, and
Qu
,
J.
,
2012
, “
A Finite Deformation Stress-Dependent Chemical Potential and Its Applications to Lithium Ion Batteries
,”
J. Mech. Phys. Solids
,
60
(
7
), pp.
1280
1295
. 10.1016/j.jmps.2012.03.008
34.
An
,
Y.
, and
Jiang
,
H.
,
2013
, “
A Finite Element Simulation on Transient Large Deformation and Mass Diffusion in Electrodes for Lithium Ion Batteries
,”
Model. Simul. Mater. Sci. Eng.
,
21
(
7
), p.
074007
. 10.1088/0965-0393/21/7/074007
35.
Brassart
,
L.
,
Zhao
,
K.
, and
Suo
,
Z.
,
2013
, “
Cyclic Plasticity and Shakedown in High-Capacity Electrodes of Lithium-Ion Batteries
,”
Int. J. Solids Struct.
,
50
(
7–8
), pp.
1120
1129
. 10.1016/j.ijsolstr.2012.12.019
36.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Inelastic Hosts as Electrodes for High-Capacity Lithium-Ion Batteries
,”
J. Appl. Phys.
,
109
(
1
), p.
016110
. 10.1063/1.3525990
37.
Shenoy
,
V. B.
,
Johari
,
P.
, and
Qi
,
Y.
,
2010
, “
Elastic Softening of Amorphous and Crystalline Li–Si Phases With Increasing Li Concentration: A First-Principles Study
,”
J. Power Sources
,
195
(
19
), pp.
6825
6830
. 10.1016/j.jpowsour.2010.04.044
38.
Zhao
,
K.
,
Wang
,
W. L.
,
Gregoire
,
J.
,
Pharr
,
M.
,
Suo
,
Z.
,
Vlassak
,
J. J.
, and
Kaxiras
,
E.
,
2011
, “
Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study
,”
Nano Lett.
,
11
(
7
), pp.
2962
2967
. 10.1021/nl201501s
39.
Chou
,
C.-Y.
,
Kim
,
H.
, and
Hwang
,
G. S.
,
2011
, “
A Comparative First-Principles Study of the Structure, Energetics, and Properties of Li–M (M = Si, Ge, Sn) Alloys
,”
J. Phys. Chem. C
,
115
(
40
), pp.
20018
20026
. 10.1021/jp205484v
40.
Johari
,
P.
,
Qi
,
Y.
, and
Shenoy
,
V. B.
,
2011
, “
The Mixing Mechanism During Lithiation of Si Negative Electrode in Li-Ion Batteries: An Ab Initio Molecular Dynamics Study
,”
Nano Lett.
,
11
(
12
), pp.
5494
5500
. 10.1021/nl203302d
41.
Xie
,
Z.
,
Ma
,
Z.
,
Wang
,
Y.
,
Zhou
,
Y.
, and
Lu
,
C.
,
2016
, “
A Kinetic Model for Diffusion and Chemical Reaction of Silicon Anode Lithiation in Lithium Ion Batteries
,”
RSC Adv.
,
6
(
27
), pp.
22383
22388
. 10.1039/C5RA27817A
42.
Liu
,
P.
,
Sridhar
,
N.
, and
Zhang
,
Y.-W.
,
2012
, “
Lithiation-Induced Tensile Stress and Surface Cracking in Silicon Thin Film Anode for Rechargeable Lithium Battery
,”
J. Appl. Phys.
,
112
(
9
), p.
093507
. 10.1063/1.4764329
43.
Jia
,
Z.
, and
Li
,
T.
,
2016
, “
Failure Mechanics of a Wrinkling Thin Film Anode on a Substrate Under Cyclic Charging and Discharging
,”
Extreme Mech. Lett.
,
8
, pp.
273
282
. 10.1016/j.eml.2016.03.006
44.
Damle
,
S. S.
,
Pal
,
S.
,
Kumta
,
P. N.
, and
Maiti
,
S.
,
2016
, “
Effect of Silicon Configurations on the Mechanical Integrity of Silicon–Carbon Nanotube Heterostructured Anode for Lithium Ion Battery: A Computational Study
,”
J. Power Sources
,
304
, pp.
373
383
. 10.1016/j.jpowsour.2015.11.027
45.
Custer
,
J.
,
Thompson
,
M. O.
,
Jacobson
,
D.
,
Poate
,
J.
,
Roorda
,
S.
,
Sinke
,
W.
, and
Spaepen
,
F.
,
1994
, “
Density of Amorphous Si
,”
Appl. Phys. Lett.
,
64
(
4
), pp.
437
439
. 10.1063/1.111121
46.
Searle
,
T.
,
1998
,
Properties of Amorphous Silicon and Its Alloys
,
The Institution of Electrical Engineers
,
London, UK
.
47.
Zhang
,
X.
,
Shyy
,
W.
, and
Sastry
,
A. M.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A910
A916
. 10.1149/1.2759840
48.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
, 2nd ed.,
Oxford University Press
,
UK
.
49.
Ryu
,
I.
,
Choi
,
J. W.
,
Cui
,
Y.
, and
Nix
,
W. D.
,
2011
, “
Size-Dependent Fracture of Si Nanowire Battery Anodes
,”
J. Mech. Phys. Solids
,
59
(
9
), pp.
1717
1730
. 10.1016/j.jmps.2011.06.003
50.
Chan
,
M. K.
,
Wolverton
,
C.
, and
Greeley
,
J. P.
,
2012
, “
First Principles Simulations of the Electrochemical Lithiation and Delithiation of Faceted Crystalline Silicon
,”
J. Am. Chem. Soc.
,
134
(
35
), pp.
14362
14374
. 10.1021/ja301766z
51.
Cui
,
Z.
,
Gao
,
F.
,
Cui
,
Z.
, and
Qu
,
J.
,
2012
, “
A Second Nearest-Neighbor Embedded Atom Method Interatomic Potential for Li–Si Alloys
,”
J. Power Sources
,
207
, pp.
150
159
. 10.1016/j.jpowsour.2012.01.145
52.
Freund
,
L. B.
, and
Suresh
,
S.
,
2004
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University Press
,
UK
.
53.
Hull
,
R.
,
1988
,
Properties of Silicon
,
INSPEC, The Institution of Electrical Engineers
,
New York
.
54.
Follstaedt
,
D. M.
,
Knapp
,
J.
, and
Myers
,
S.
,
2004
, “
Mechanical Properties of Ion-Implanted Amorphous Silicon
,”
J. Mater. Res.
,
19
(
1
), pp.
338
346
. 10.1557/jmr.2004.19.1.338
55.
Hopcroft
,
M. A.
,
Nix
,
W. D.
, and
Kenny
,
T. W.
,
2010
, “
What is the Young's Modulus of Silicon?
J. Microelectromech. Syst.
,
19
(
2
), pp.
229
238
. 10.1109/JMEMS.2009.2039697
56.
Yang
,
F.
,
2005
, “
Interaction Between Diffusion and Chemical Stresses
,”
Mater. Sci. Eng. A
,
409
(
1–2
), pp.
153
159
. 10.1016/j.msea.2005.05.117
57.
Vanimisetti
,
S. K.
, and
Ramakrishnan
,
N.
,
2012
, “
Effect of the Electrode Particle Shape in Li-Ion Battery on the Mechanical Degradation During Charge–Discharge Cycling
,”
Proc. Inst. Mech. Eng. C
,
226
(
9
), pp.
2192
2213
. 10.1177/0954406211432668
58.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
,
2008
, “
The Influence of Surface Mechanics on Diffusion Induced Stresses Within Spherical Nanoparticles
,”
J. Appl. Phys.
,
104
(
8
), p.
083521
. 10.1063/1.3000442
59.
Yoshimura
,
K.
,
Suzuki
,
J.
,
Sekine
,
K.
, and
Takamura
,
T.
,
2007
, “
Measurement of the Diffusion Rate of Li in Silicon by the Use of Bipolar Cells
,”
J. Power Sources
,
174
(
2
), pp.
653
657
. 10.1016/j.jpowsour.2007.06.115
You do not currently have access to this content.