Li2NixFe1−xSiO4 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) samples were prepared by sol–gel process. The crystal structure of prepared samples of Li2NixFe1−xSiO4 was characterized by XRD. The different crystallographic parameters such as crystallite size and lattice cell parameters have been calculated. Scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) investigations were carried out explaining the morphology and function groups of the synthesized samples. Furthermore, electrochemical impedance spectra (EIS) measurements are applied. The obtained results indicated that the highest conductivity is achieved for Li2Ni0.4Fe0.6SiO4 electrode compound. It was observed that Li/Li2Ni0.4Fe0.6SiO4 battery has initial discharge capacity of 164 mAh g−1 at 0.1 C rate. The cycle life performance of all Li2NixFe1−xSiO4 batteries was ranged between 100 and 156 mAh g−1 with coulombic efficiency range between 70.9% and 93.9%.

References

1.
Hu
,
M.
,
Pang
,
X.
, and
Zhou
,
Z.
,
2013
, “
Recent Progress in High-Voltage Lithium ion Batteries
,”
J. Power Sources
,
237
(
1
), pp.
229
242
.
2.
Wang
,
X.
,
Qing
,
C.
,
Zhang
,
Q.
,
Fan
,
W.
,
Huang
,
X.
,
Yang
,
B.
, and
Cui
,
J.
,
2014
, “
Facile Synthesis and Enhanced Electrochemical Performance of Li2FeSiO4/C/Reduced Graphene Oxide Nanocomposites
,”
Electrochim. Acta
,
134
, pp.
371
376
.
3.
Shenouda
,
A. Y.
, and
Liu
,
H. K.
,
2010
, “
Preparation, Characterization, and Electrochemical Performance of Li2CuSnO4 and Li2CuSnSiO6 Electrodes for Lithium Batteries
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
A1183
A1187
.
4.
Qu
,
L.
,
Liu
,
Y.
,
Fang
,
S.
,
Yang
,
L.
, and
Hirano
,
S.
,
2015
, “
Li2FeSiO4 Coated by Sorbitanlaurat-Derived Carbon as Cathode of High-Performance Lithium-Ion Battery
,”
Electrochim. Acta
,
163
(
1
), pp.
123
131
.
5.
Shi
,
L.
,
Xie
,
W.
,
Ge
,
Q.
,
Wang
,
S.
,
Chen
,
D.
,
Qin
,
L.
,
Fan
,
M.
,
Bai
,
L.
,
Chen
,
Z.
,
Shen
,
H.
,
Tian
,
G.
,
Lv
,
C.
, and
Shu
,
K.
,
2015
, “
Preparation and Electrochemical Performances of LiNi0.5Mn0.5O2 Cathode Materials for Lithium-Ion Batteries
,”
Int. J. Electrochem. Sci.
,
10
(
6
), pp.
4696
4705
.
6.
Wei
,
C.
,
Deng
,
J.
,
Xi
,
L.
,
Zhou
,
H.
,
Wang
,
Z.
,
Chung
,
C. Y.
,
Yao
,
Q.
, and
Rao
,
G.
,
2013
, “
High Power LiMn2O4 Hollow Microsphere Cathode Materials for Lithium Ion Batteries
,”
Int. J. Electrochem. Sci.
,
8
(
5
), pp.
6775
6783
.
7.
Nyten
,
A.
,
Kamali
,
S.
,
Hanggstrom
,
L.
,
Gustafsson
,
T.
, and
Thomas
,
J. O.
,
2006
, “
The Lithium Extraction/Insertion Mechanism in Li2FeSiO4
,”
J. Mater. Chem.
,
16
(
23
), pp.
2266
2272
.
8.
Shenouda
,
A. Y.
, and
Liu
,
H. K.
,
2009
, “
Studies on Electrochemical Behaviour of Zinc-Doped LiFePO4 for Lithium Battery Positive Electrode
,”
J. Alloys Compd.
,
477
(
1–2
), pp.
498
503
.
9.
Liu
,
Y.
,
Mi
,
C. H.
,
Yuan
,
C. Z.
, and
Zhang
,
X. G.
,
2009
, “
Improvement of Electrochemical and Thermal Stability of LiFePO4 Cathode Modified by CeO2
,”
J. Electroanal. Chem.
,
628
(
1–2
), pp.
73
80
.
10.
Huang
,
H.
,
Yin
,
S. C.
, and
Nazar
,
L. F.
,
2001
, “
Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates
,”
Electrochem. Solid-State Lett.
,
4
(
10
), pp.
A170
A172
.
11.
Armand
,
M.
,
Michot
,
C.
,
Ravet
,
N.
,
Simoneau
,
M.
, and
Hovington
,
P.
,
2000
, “Lithium Insertion Electrode Materials Based on Orthosilicate Derivatives,” U.S. Patent No.
6085015
.
12.
Zhang
,
S.
,
Deng
,
C.
, and
Yang
,
S. Y.
,
2009
, “
Preparation of Nano-Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries
,”
Electrochem. Solid-State Lett.
,
12
(
7
), pp.
A136
A139
.
13.
Dominko
,
R.
,
Bele
,
M.
,
Gaberscek
,
M.
,
Remskar
,
M.
,
Hanzel
,
D.
,
Pejovnik
,
S.
, and
Jamnik
,
J.
,
2006
, “
Porous Olivine Composites Synthesized by Sol–Gel Technique
,”
J. Power Sources
,
153
(
2
), pp.
274
280
.
14.
Nyten
,
A.
,
Abouimrane
,
A.
,
Armand
,
M.
,
Gustafsson
,
T.
, and
Thomas
,
J. O.
,
2005
, “
Electrochemical Performance of Li2FeSiO4 as a New Li-Battery Cathode Material
,”
Electrochem. Commun.
,
7
(
2
) pp.
156
160
.
15.
Zaghib
,
K.
,
Salah
,
A. A.
,
Ravet
,
N.
,
Mauger
,
A.
,
Gendron
,
F.
, and
Julien
,
C. M.
,
2006
, “
Structural, Magnetic and Electrochemical Properties of Lithium Iron Orthosilicate
,”
J. Power Sources
,
160
(
2
), pp.
1381
1386
.
16.
Li
,
Y.-X.
,
Gong
,
Z.-L.
, and
Yang
,
Y.
,
2007
, “
Synthesis and Characterization of Li2MnSiO4/C Nanocomposite Cathode Material for Lithium Ion Batteries
,”
J. Power Sources
,
174
(
2
), pp.
528
532
.
17.
Zhang
,
Q.
,
Zhao
,
Y.
,
Su
,
C.
, and
Li
,
M.
,
2011
, “
Nano/Micro Lithium Transition Metal (Fe, Mn, Co and Ni) Silicate Cathode Materials for Lithium Ion Batteries
,”
Recent Pat. Nanotechnol.
,
5
(
3
), pp.
225
233
.
18.
Chen
,
W. H.
,
Lan
,
M.
,
Zhu
,
D.
,
Wang
,
C.
,
Xue
,
S.
,
Yang
,
C. C.
,
Li
,
Z. X.
,
Zhang
,
J.
, and
Mi
,
L. W.
,
2013
, “
Synthesis, Characterization and Electrochemical Performance of Li2FeSiO4/C for Lithium-Ion Batteries
,”
RSC Adv.
,
3
(
2
), pp.
408
412
.
19.
Guo
,
H.
,
Cao
,
X.
,
Li
,
X.
,
Li
,
L.
,
Li
,
X.
,
Wang
,
Z.
,
Peng
,
W.
, and
Li
,
Q.
,
2010
, “
Optimum Synthesis of Li2Fe1−xMnxSiO4/C Cathode for Lithium-Ion Batteries
,”
Electrochim. Acta
,
55
(
27
), pp.
8036
8042
.
20.
Zhang
,
S.
,
Deng
,
C.
,
Fu
,
B. L.
,
Yang
,
S. Y.
, and
Ma
,
L.
,
2010
, “
Effects of Cr Doping on the Electrochemical Properties of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries
,”
Electrochim. Acta
,
55
(
28
), pp.
8482
8489
.
21.
Zhang
,
L.-L.
,
Sun
,
H.-B.
,
Yang
,
X. L.
,
Wen
,
Y. W.
,
Huang
,
Y. H.
,
Li
,
M.
,
Peng
,
G.
,
Tao
,
H. C.
,
Ni
,
S. B.
, and
Liang
,
G.
,
2015
, “
Study on Electrochemical Performance and Mechanism of V-Doped Li2FeSiO4 Cathode Material for Li-Ion Batteries
,”
Electrochim. Acta
,
152
, pp.
496
504
.
22.
Deng
,
C.
,
Zhang
,
S.
,
Fu
,
B. L.
,
Yang
,
S. Y.
, and
Ma
,
L.
,
2010
, “
Characterization of Li2MnSiO4 and Li2FeSiO4 Cathode Materials Synthesized Via a Citric Acid Assisted Sol–Gel Method
,”
Mater. Chem. Phys.
,
120
(
1
), pp.
14
17
.
23.
Yang
,
R.
,
Liu
,
X.-Y.
,
Qu
,
Y.
,
Lei
,
J.
, and
Ahn
,
J. H.
,
2012
, “
Synthesis of Nanostructured Li2FeSiO4/C Cathode for Lithium-Ion Battery by Solution Method
,”
Trans. Nonferrous Met. Soc. China
,
22
(
10
), pp.
2529
2534
.
24.
Zhang
,
Z.
,
Liu
,
X.
,
Wang
,
L.
,
Wu
,
Y.
,
Zhao
,
H.
, and
Chen
,
B.
,
2015
, “
Synthesis of Li2FeSiO4/C Nanocomposite Via a Hydrothermal-Assisted Sol–Gel Process
,”
Solid State Ionics
,
276
, pp.
33
39
.
25.
Li
,
M.
,
Zhang
,
L.-L.
,
Yang
,
X. L.
,
Huang
,
Y. H.
,
Sun
,
H. B.
,
Ni
,
S. B.
, and
Tao
,
H. C.
,
2015
, “
Synthesis and Electrochemical Performance of Li2FeSiO4/C Cathode Material Using Ascorbic Acid as an Additive
,”
J. Solid State Electrochem.
,
19
(
2
), pp.
415
421
.
26.
Oghbaei
,
M.
,
Baniasadi
,
F.
, and
Asgari
,
S.
,
2016
, “
Lithium Iron Silicate Sol–Gel Synthesis and Electrochemical Investigation
,”
J. Alloys Compd.
,
672
, pp.
93
97
.
27.
Herle
,
P. S.
,
Ellis
,
B.
,
Coombs
,
N.
, and
Nazar
,
L. F.
,
2004
, “
Nano-Network Electronic Conduction in Iron and Nickel Olivine Phosphates
,”
Nat. Mater.
,
3
(
3
), pp.
147
152
.
28.
Zhong
,
G.
,
Li
,
Y.
,
Yan
,
P.
,
Liu
,
Z.
,
Xie
,
M.
, and
Lin
,
H.
,
2010
, “
Structural, Electronic, and Electrochemical Properties of Cathode Materials Li2MSiO4 (M = Mn, Fe, and Co): Density Functional Calculations
,”
J. Phys. Chem. C
,
114
(
8
), pp.
3693
3700
.
29.
Zhang
,
L.
,
Duan
,
S.
,
Yang
,
X.
,
Liang
,
G.
,
Huang
,
Y.
,
Cao
,
X.
,
Yang
,
J.
,
Li
,
M.
,
Croft
,
M. C.
, and
Lewis
,
C.
,
2015
, “
New Insights Into the Electrochemical Performance of Li2MnSiO4: Effect of Cationic Substitutions
,”
J. Mater. Chem. A
,
3
(
11
), pp.
6004
6011
.
30.
Sanad
,
M. M. S.
,
Rashad
,
M. M.
,
Abdel-Aal
,
E. A.
,
El-Shahat
,
M. F.
, and
Powers
,
K.
,
2014
, “
Effect of Y3+, Gd 3+ and La3+ Dopant Ions on Structural, Optical and Electrical Properties of o-Mullite Nanoparticles
,”
J. Rare Earths
,
32
(
1
), pp.
37
42
.
31.
Luo
,
S. H.
,
Wang
,
M.
,
Zhu
,
X.
, and
Geng
,
G. H.
,
2012
, “
Hydrothermal Synthesis of Li2MnSiO4 Powders as a Cathode Material for Lithium Ion Cells
,”
Key Eng. Mater.
,
512–515
, pp.
1588
1591
.
32.
Pandey
,
M.
,
Ramar
,
V.
,
Balaya
,
P.
, and
Kshirsagar
,
R. J.
,
2015
, “
Infrared Spectroscopy of Li2MnSiO4: A Cathode Material for Li Ion Batteries
,”
AIP Conf. Proc.
,
1665
(
1
), p.
140044
.
33.
Jaén
,
J. A.
,
Iglesias
,
J.
,
Muñoz
,
A.
,
Tabares
,
J. A.
, and
Pérez Alcázar
,
G. A.
,
2015
, “
Characterization of Magnesium Doped Lithium Iron Silicate
,”
Croat. Chem. Acta
,
88
(
4
), pp.
487
493
.
34.
Kojima
,
T.
,
Kojima
,
A.
,
Miyuki
,
T.
,
Okuyama
,
Y.
, and
Sakai
,
T.
,
2011
, “
Synthesis Method of the Li-Ion Battery Cathode Material Li2FeSiO4 Using a Molten Carbonate Flux
,”
J. Electrochem. Soc.
,
158
(
12
), pp.
A1340
A1346
.
35.
Xu
,
Y.
,
Shen
,
W.
,
Zhang
,
A.
,
Liu
,
H.
, and
Ma
,
Z.
,
2014
, “
Template-Free Hydrothermal Synthesis of Li2FeSiO4 Hollow Spheres as Cathode Materials for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
2
(
32
), pp.
12982
12990
.
You do not currently have access to this content.