Lithium-ion batteries are the most commonly used portable energy storage technology due to their relatively high specific energy and power but face thermal issues that raise safety concerns, particularly in automotive and aerospace applications. In these environments, there is zero tolerance for catastrophic failures such as fire or cell rupture, making thermal management a strict requirement to mitigate thermal runaway potential. The optimum configurations for such thermal management systems are dependent on both the thermo-electrochemical properties of the batteries and operating conditions/engineering constraints. The aim of this study is to determine the effect of various combined active (liquid heat exchanger) and passive (phase-change material) thermal management techniques on cell temperatures and thermal balancing. The cell configuration and volume/weight constraints have important roles in optimizing the thermal management technique, particularly when utilizing both active and passive systems together. A computational modeling study including conjugate heat transfer and fluid dynamics coupled with thermo-electrochemical dynamics is performed to investigate design trade-offs in lithium-ion battery thermal management strategies. It was found that phase-change material properties and cell spacing have a significant effect on the maximum and gradient of temperature in a module cooled by combined active and passive thermal management systems.

References

1.
Jeevarajan
,
J. A.
,
2012
, “
Validation of Battery Safety For Space Missions
,”
Advanced Automotive Battery Conference
(
AABC
), Orlando, FL, Feb. 6–10, Report No. JSC-CN-25708.
2.
Jeevarajan
,
J. A.
,
Strangways
,
B.
, and
Nelson
,
T.
,
2009
, “
Performance and Safety Evaluation of High-Rate 18650 Lithium-Iron-Phosphate Cells, NASA Battery Workshop
.”
3.
Jeevarajan
,
J. A.
,
2007
, “
Hazards, Safety and Design Considerations for Commercial Lithium-ion Cells and Batteries
,”
2nd International Association for the Advancement of Space Safety
(
IAASS
), Chicago, IL, May 14–17.
4.
Jeevarajan
,
J. A.
,
2010
, “
Safety Limitations Associated With Commercial 18650 Lithium-ion Cells
,” Lithium Mobile Power and Battery Safety,
Report No. JSC-CN-21966
.
5.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
.
6.
Al-Hallaj
,
S.
, and
Selman
,
J. R.
,
2002
, “
Thermal Modeling of Secondary Lithium Batteries for Electric Vehicle/Hybrid Electric Vehicle Applications
,”
J. Power Sources.
,
110
(
2
), pp.
341
348
.
7.
Troxler
,
Y.
,
Wu
,
B.
,
Marinescu
,
M.
,
Yufit
,
V.
,
Patel
,
Y.
,
Marquis
,
A. J.
,
Brandon
,
N. P.
,
Offer
,
G. J.
,
2014
, “
The Effect of Thermal Gradients on the Performance of Lithium-ion Batteries
,”
J. Power Sources
,
247
, pp.
1018
1025
.
8.
Hatchard
,
T. D.
,
MacNeil
,
D. D.
,
Basu
,
A.
,
and Dahn
,
J. R.
,
2001
, “
Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells
,”
J. Electrochem. Soc.
,
148
(
7
), pp.
A755
A761
.
9.
Peng
,
P.
,
Sun
,
Y. Q.
, and
Jiang
,
F. M.
,
2014
, “
Thermal Analyses of LiCoO2 Lithium-ion Battery During Oven Tests
,”
Heat Mass Transfer
,
50
(
10
), pp.
1405
1416
.
10.
Lopez
,
C.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2015
, “
Characterization of Lithium-Ion Battery Thermal Abuse Behavior Using Experimental and Computational Analysis
,”
J. Electrochem. Soc.
,
162
(
10
), pp.
A2163
A2173
.
11.
Lopez
,
C.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2015
, “
Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1905
A1915
.
12.
Ji
,
Y.
,
Zhang
,
Y. C.
, and
Wang
,
C. Y.
,
2013
, “
Li-Ion Cell Operation at Low Temperatures
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A636
A649
.
13.
Pesaran
,
A.
,
Keyser
,
M.
,
Kim
,
G.
,
Santhanagopalan
,
S.
, and
Smith
,
K.
,
2013
, “
Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles
,” NREL,
Paper No. NREL/PR-5400-57747
.
14.
Sabbah
,
R.
,
Kizilel
,
R.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2008
, “
Active (Air-Cooled) vs. Passive (Phase Change Material) Thermal Management of High Power Lithium-ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution
,”
J. Power Sources
,
182
(
2
), pp.
630
638
.
15.
Pesaran
,
A. A.
,
Burch
,
S.
, and
Keyser
,
M.
,
1999
, “
An Approach for Designing Thermal Management Systems for Electric and Hybrid Vehicle Battery Packs
,”
VTMS 4: Vehicle Thermal Management Systems
, pp.
331
346
.
16.
Khateeb
,
S. A.
,
Farid
,
M. M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2004
, “
Design and Simulation of a Lithium-Ion Battery With a Phase Change Material Thermal Management System for an Electric Scooter
,”
J. Power Sources
,
128
(
2
), pp.
292
307
.
17.
Ling
,
Z. Y.
,
Chen
,
J.
,
Fang
,
X.
,
Zhang
,
Z.
,
Xu
,
T.
,
Gao
,
X.
, and
Wang
,
S.
,
2014
, “
Experimental and Numerical Investigation of the Application of Phase Change Materials in a Simulative Power Batteries Thermal Management System
,”
Appl. Energy
,
121
, pp.
104
113
.
18.
Ling
,
Z. Y.
,
Zhang
,
Z.
,
Shi
,
G.
,
Fang
,
X.
,
Wang
,
L.
,
Gao
,
X.
,
Fang
,
Y.
,
Xu
,
T.
,
Wang
,
S.
, and
Liu
,
X.
,
2014
, “
Review on Thermal Management Systems Using Phase Change Materials for Electronic Components, Li-Ion Batteries and Photovoltaic Modules
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
427
438
.
19.
Sari
,
A.
, and
Karaipekli
,
A.
,
2007
, “
Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1271
1277
.
20.
Ramandi
,
M. Y.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2011
, “
Heat Transfer and Thermal Management of Electric Vehicle Batteries With Phase Change Materials
,”
Heat Mass Transfer
,
47
(
7
), pp.
777
788
.
21.
Mills
,
A.
, and
Al-Hallaj
,
S.
,
2005
, “
Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs
,”
J. Power Sources
,
141
(
2
), pp.
307
315
.
22.
Ehid
,
R.
, and
Fleischer
,
A. S.
,
2012
, “
Development and Characterization of Paraffin-Based Shape Stabilized Energy Storage Materials
,”
Energy Convers. Manage.
,
53
(
1
), pp.
84
91
.
23.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
24.
Jiao
,
C. M.
,
Ji
,
B. H.
, and
Fang
,
D.
,
2012
, “
Preparation and Properties of Lauric Acid-Stearic Acid/Expanded Perlite Composite as Phase Change Materials for Thermal Energy Storage
,”
Mater. Lett.
,
67
(
1
), pp.
352
354
.
25.
Bandhauer
,
T.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2015
, “
Electrochemical-Thermal Modeling to Evaluate Battery Thermal Management Strategies—I: Side Cooling
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
A125
A136
.
26.
Bandhauer
,
T.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2015
, “
Electrochemical-Thermal Modeling to Evaluate Battery Thermal Management Strategies—II: Edge and Internal Cooling
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
A137
A148
.
27.
Jeevarajan
,
J. A.
, and
Tracinski
,
W.
,
2010
, “
Performance and Safety Tests of Lithium-Ion Cells Arranged in a Matrix Design Configuration
,”
Space Power Workshop
,
Report No. JSC-CN-20443
.
28.
Ramadesigan
,
V.
,
Northrop
,
P. W. C.
,
De
,
S.
,
Santhanagopalan
,
S.
,
Braatz
,
R. D.
, and
Subramanian
,
V. R.
,
2012
, “
Modeling and Simulation of Lithium-Ion Batteries From a Systems Engineering Perspective
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
R31
R45
.
29.
Kim
,
G. H.
,
Smith
,
K.
,
Lee
,
K. J.
,
Santhanagopalan
,
S.
, and
Pesaran
,
A.
,
2011
, “
Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
A955
A969
.
30.
Mukherjee
,
P. P.
,
Pannala
,
S.
, and
Turner
,
J. A.
,
2011
,
Modeling and Simulation of Battery Systems
(
Handbook of Battery Materials
), 2nd ed., pp.
843
875
.
31.
CD-Adapco
,
2014
, “
STAR-CCM+ User Guide
,” CD-Adapco,
New York
.
32.
Bergman
,
T. L.
, and
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed,
Wiley
,
Hoboken, NJ
.
33.
Vishwakarma
,
V.
,
Waghela
,
C.
,
Wei
,
Z.
,
Prasher
,
R.
,
Nagpure
,
S. C.
,
Li
,
J.
,
Liu
,
F.
,
Daniel
,
C.
, and
Jain
,
A.
,
2015
, “
Heat Transfer Enhancement in a Lithium-Ion Cell Through Improved Material-Level Thermal Transport
,”
J. Power Sources
,
300
, pp.
123
131
.
34.
Ye
,
Y. H.
,
Saw
,
L. H.
,
Shi
,
Y.
,
Somasundaram
,
K.
, and
Tay
,
A. A. O.
,
2014
, “
Effect of Thermal Contact Resistances on Fast Charging of Large Format Lithium Ion Batteries
,”
Electrochimica Acta
,
134
, pp.
327
337
.
35.
Gu
,
W. B.
, and
Wang
,
C. Y.
,
2000
, “
Thermal-Electrochemical Modeling of Battery Systems
,”
J. Electrochem. Soc.
,
147
(
8
), pp.
2910
2922
.
36.
Newman
,
J.
, and
Tiedemann
,
W.
,
1993
, “
Potential and Current Distribution in Electrochemical-Cells—Interpretation of the Half-Cell Voltage Measurements as a Function of Reference-Electrode Location
,”
J. Electrochem. Soc.
,
140
(
7
), pp.
1961
1968
.
37.
Gu
,
H.
,
1983
, “
Mathematical-Analysis of a Zn/Niooh Cell
,”
J. Electrochem. Soc.
,
130
(
7
), pp.
1459
1464
.
38.
Kim
,
U. S.
,
Shin
,
C. B.
, and
Kim
,
C. S.
,
2009
, “
Modeling for the Scale-Up of a Lithium-Ion Polymer Battery
,”
J. Power Sources
,
189
(
1
), pp.
841
846
.
39.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium Polymer Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
40.
CD-Adapco
,
2014
, “
Battery Design Studio Professional User Guide
,” CD-Adapco,
New York
.
41.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface-Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
42.
Muzaferija
,
S.
, and
Peric
,
M.
,
1999
, “
Computation of Free Surface Flows Using Interface-Tracking and Interface-Capturing Methods
,”
Nonlinear Water Wave Interaction
,
O.
Mahrenholtz
and
Markiewicz
,
M.
, eds.,
WIT Press
,
Southampton, UK
.
43.
Teskeredzic
,
A.
,
Demirdzic
,
I.
, and
Muzaferija
,
S.
,
2002
, “
Numerical Method for Heat Transfer, Fluid Flow, and Stress Analysis in Phase-Change Problems
,”
Numer. Heat Transfer Part B
,
42
(
5
), pp.
437
459
.
44.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
,
1997
, “
Towards a General Numerical Scheme for Solidification Systems
,”
Int. J. Heat Mass Transfer
,
40
(
12
), pp.
2859
2868
.
45.
Swaminathan
,
C. R.
, and
Voller
,
V. R.
,
1992
, “
A General Enthalpy Method for Modeling Solidification Processes
,”
Metall. Trans. B
,
23
(
5
), pp.
651
664
.
46.
Oldenburg
,
C. M.
, and
Spera
,
F. J.
,
1992
, “
Hybrid Model for Solidification and Convection
,”
Numer. Heat Transfer Part B
,
21
(
2
), pp.
217
229
.
You do not currently have access to this content.