This paper deals with on-board energy management of hybrid fuel cell vehicles equipped with a polymer electrolyte membrane fuel cell (FC) stack and a battery pack as main power source and hybridizing device, respectively. A multilevel architecture was conceived to separately manage on-board energy flows and mutual interaction between FC auxiliaries and powertrain components. At the highest-level, a splitting index map was designed to share the power requested by the driver among the fuel cell stack and batteries as function of traction power demand and batteries’ state of charge. At the intermediate-level are defined the set points at which to operate the fuel cell system (FCS) to achieve maximum efficiency. Then, at the low-level, specific control strategies are adopted to reach the set point as addressed by the intermediate-level. To guarantee the accuracy required for control strategy development, a mixed modeling approach was followed to simulate vehicle powertrain, FCS, electrochemistry, and water management. The simulations were carried out for a 60 kW FC powertrain running under severe transient maneuvers. The results show the potentialities of the proposed approach for energy management optimization, control, and diagnostics analyses.

1.
Larminie
,
J.
, and
Dicks
,
A.
, 2003,
Fuel Cell Systems Explained
,
Wiley
,
New York
.
2.
U.S. Department of Energy—National Energy Technology Laboratory Strategic Center for Natural Gas
, 2004,
Fuel Cell Handbook
, 7th ed.,
University Press of the Pacific
,
Morgantown, WV
.
3.
Cownden
,
R.
,
Nahon
,
M.
, and
Rosen
,
M. A.
, 2001, “
Modelling and Analysis of a Solid Polymer Fuel Cell System for Transportation Applications
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
615
623
.
4.
Arsie
,
I.
,
Di Domenico
,
A.
,
Pianese
,
C.
, and
Sorrentino
,
M.
, 2007, “
Modeling and Analysis of Transient Behavior of PEM Fuel Cell Hybrid Vehicles
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
(
3
), pp.
261
271
.
5.
Bansal
,
D.
,
Rajagopalan
,
S.
,
Choi
,
T.
,
Guezennec
,
Y.
, and
Yurkovich
,
S.
, 2004, “
Pressure and Air Fuel Ratio Control of PEM Fuel Cell System for Automotive Traction
,”
IEEE-VPP Conference
, Paris, France, Oct. 6–8.
6.
Di Domenico
,
A.
, 2007, “
A Dynamic Model of Automotive PEM Fuel Cell System for Powertrain Design, Control and Hierarchical Model Identification Within Hardware in the Loop Fuel Cell Hybrid Testing
,” Ph.D. thesis, University of Salerno, Fisciano (SA), Italy.
7.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
, 1969,
Feedback Control of Dynamic Systems
, 3rd ed.,
Addison-Wesley
,
Reading, MA
.
8.
Sorrentino
,
M.
,
Pianese
,
C.
, and
Guezennec
,
Y. G.
, 2008, “
A Hierarchical Modeling Approach to the Simulation and Control of Planar Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
180
(
1
), pp.
380
392
.
9.
Pukrushpan
,
J.
, 2003, “
Modeling and Control of Fuel Cell System and Fuel Processor
,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
10.
Di Domenico
,
A.
,
Esposito
,
A.
,
Guezennec
,
Y. G.
, and
Miotti
,
A.
, 2006, “
Transient Analysis and Modelling of Automotive PEM Fuel Cell System Accounting for Water Transport Dynamics
,”
Proceedings of the ASME 2006: The Fourth International Conferences on Fuel Cell Science, Engineering, and Technology
, Irvine, CA, Jun. 19–21.
11.
Guzzella
,
L.
, and
Onder
,
C. H.
, 2004,
Introduction to Modeling and Control of Internal Combustion Engine Systems
,
Springer
,
New York
.
12.
Arsie
,
I.
,
Di Domenico
,
A.
,
Pappalardo
,
L.
,
Pianese
,
C.
, and
Sorrentino
,
M.
, 2006, “
Steady-State Analysis and Energetic Comparison of Air Compressors for PEM Fuel Cell Systems
,”
Proceedings of the ASME 2006: The Fourth International Conferences on Fuel Cell Science, Engineering, and Technology
, Irvine, CA, Jun. 19–21.
13.
Rajagopalan
,
S. V.
, 2006, “
Modeling and Control of the Air Supply Side of Pressurized PEM Fuel Cells for Automotive Traction
,” MS thesis, The Ohio State University, Columbus, OH.
14.
Badami
,
M.
, and
Caldera
,
C.
, 2000, “
Dynamic Model of a Load-Following Fuel Cell Vehicle: Impact of the Air System
,” SAE Paper No. 2002-01-0100.
15.
Wiartalla
,
A.
, and
Pischinger
,
S.
, 2000, “
Compressor Expander Unit for Fuel Cell System
,” SAE Paper No. 2000-01-0380.
16.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
17.
Miotti
,
A.
,
Di Domenico
,
A.
,
Guezennec
,
Y. G.
, and
Rajagopalan
,
S. V.
, 2005, “
Control-Oriented Model for an Automotive PEM Fuel Cell System with Imbedded 1+1D Membrane Water Transport
,”
Proc. of Vehicle Power and Propulsion 2005 IEEE Conference.
18.
Aquino
,
C. F.
, 1981, “
Transient A/F Control Characteristics of the 5 liter Central Fuel Injection Engine
,” SAE Paper No. 810494, pp.
1
15
.
19.
Kueh
,
T.
,
Ramsey
,
J.
, and
Threlkeld
,
J.
, 1998,
Thermal Environmental Engineering
,
McGraw-Hill
,
New York
.
20.
Mazumder
,
S.
, 2005, “
A Generalized Phenomenological Model and Database for the Transport of Water and Current in Polymer Electrolyte Membranes
,”
J. Electrochem. Soc.
0013-4651,
152
(
8
), pp.
A1633
A1644
.
21.
Ambuehl
,
D.
,
Anguiano
,
N.
,
Sorrentino
,
M.
,
Guezennec
,
Y.
,
Mazumder
,
S.
, and
Rizzoni
,
G.
, 2005, “
A Reduced 1&1D Model for Optimization Analysis of a PEM Fuel Cell
,”
Proceedings of the IMECE 2005 ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL, Nov. 5–11.
22.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
, 2004, “
A Two-Dimensional Computational Model of a PEMFC With Liquid Water Transport
,”
J. Power Sources
0378-7753,
128
, pp.
173
184
.
23.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
0013-4651,
138
(
8
), pp.
2334
2341
.
24.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2001,
Fundamentals of Heat and Mass Transfer
, 5th ed.,
Wiley
,
New York
.
25.
Costamagna
,
P.
, 2001, “
Transport Phenomena in Polymeric Membrane Fuel Cells
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
323
332
.
26.
Maggio
,
G.
,
Recupero
,
V.
, and
Pino
,
L.
, 2001, “
Modeling Polymer Electrolyte Fuel Cells: An Innovative Approach
,”
J. Power Sources
0378-7753,
101
, pp.
275
286
.
27.
Wang
,
Y.
, and
Wang
,
C. Y.
, 2006, “
Dynamics of Polymer Electrolyte Fuel Cells Undergoing Load Changes
,”
Electrochim. Acta
0013-4686,
51
, pp.
3924
3933
.
28.
Silva
,
R. F.
,
De Francesco
,
M.
, and
Pozio
,
A.
, 2004, “
Solution-Cast Nafion® Ionomer Membranes: Preparation and Characterization
,”
Electrochim. Acta
0013-4686,
49
, pp.
3211
3219
.
29.
Alhetairshi
,
M.
,
Di Domenico
,
A.
,
Guezennec
,
Y. G.
,
Yurkovich
,
S.
,
Miotti
,
A.
, and
Rajagopalan
,
S. V.
, 2006, “
Multivariable Control for an Automotive Traction PEM Fuel Cell System
,”
American Control Conference Silver Anniversary
, Minneapolis, MN, Jun. 14–16.
30.
Levine
,
W. S.
, 2002,
The Control Handbook
,
CRC
,
Boca Raton, FL
.
You do not currently have access to this content.