A control-oriented mathematical model of a polymer electrolyte membrane (PEM) fuel cell stack is developed and experimentally verified. The model predicts the bulk fuel cell transient temperature and voltage as a function of the current drawn and the inlet coolant conditions. The model enables thermal control synthesis and optimization and can be used for estimating the transient system performance. Unlike other existing thermal models, it includes the gas supply system, which is assumed to be capable of controlling perfectly the air and hydrogen flows. The fuel cell voltage is calculated quasistatically. Measurement data of a 1.25kW, 24-cell fuel cell stack with an integrated membrane-type humidification section is used to identify the system parameters and to validate the performance of the simulation model. The predicted thermal response is verified during typical variations in load, coolant flow, and coolant temperature. A first-law control volume analysis is performed to separate the relevant from the negligible contributions to the thermal dynamics and to determine the sensitivity of the energy balance to sensor errors and system parameter deviations.

1.
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
, 1996, “
A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
61
(
1–2
), pp.
183
188
.
2.
Lee
,
J. H.
, and
Lalk
,
T. R.
, 1998, “
Modeling Fuel Cell Stack Systems
,”
J. Power Sources
0378-7753,
73
(
2
), pp.
229
241
.
3.
Xue
,
X.
,
Tang
,
J.
,
Smirnova
,
A.
,
England
,
R.
, and
Sammes
,
N.
, 2004, “
System Level Lumped-Parameter Dynamic Modeling of PEM Fuel Cell
,”
J. Power Sources
0378-7753,
133
(
2
), pp.
188
204
.
4.
Zhang
,
Y. J.
,
Ouyang
,
M. G.
,
Lu
,
Q. C.
,
Luo
,
J. X.
, and
Li
,
X. H.
, 2004, “
A Model Predicting Performance of Proton Exchange Membrane Fuel Cell Stack Thermal Systems
,”
Appl. Therm. Eng.
1359-4311,
24
(
4
), pp.
501
513
.
5.
Hrsg.: Verein Deutscher Ingenieure, 2002,
VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang
,
Springer
, Berlin.
6.
Guzzella
,
L.
, 1999, “
Control Oriented Modelling of Fuel-Cell Based Vehicles
,” Presentation at the NSF Workshop on the Integration of Modeling and Control for Automotive Systems.
7.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
,
Roberge
,
P. R.
, and
Rodrigues
,
A.
, 1994, “
Parametric Modelling of the Performance of a 5-kW Proton-Exchange Membrane Fuel Cell Stack
,”
J. Power Sources
0378-7753,
49
(
1–3
), pp.
349
356
.
8.
Kim
,
J.
,
Lee
,
S. M.
,
Srinivasan
,
S.
, and
Chamberlin
,
C. E.
, 1995, “
Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation
,”
J. Electrochem. Soc.
0013-4651,
142
(
8
), pp.
2670
2674
.
9.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
, 2004,
Control of Fuel Cell Power Systems: Principles, Modeling, Analysis, and Feedback Design
,
Springer
,
London
, Chap. 3.1.
You do not currently have access to this content.