Abstract

The shift away from fossil fuels for modern-day energy requirements has resulted in a higher demand for electric vehicles and has led to a critical role for lithium-ion batteries. Next-generation higher capacity electrode materials are needed to meet the demands of future electric vehicles. Lithium-ion batteries function optimally around room temperature (23 °C), but discharge capacity diminishes rapidly below 0 °C and significantly affects the population living in colder climates. Higher capacity electrode materials such as silicon need to be paired with new electrolytes that favor ideal low-temperature performance. This work pairs a typical nickel-rich lithium cathode with a modified silicon anode and a ternary carbonate/ester electrolyte to demonstrate improved discharge capacity at subzero temperature.

References

1.
Kim
,
T.
,
Song
,
W.
,
Son
,
D. Y.
,
Ono
,
L. K.
, and
Qi
,
Y.
,
2019
, “
Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies
,”
J. Mater. Chem. A
,
7
(
7
), pp.
2942
2964
.
2.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
, pp.
99
114
.
3.
Farmakis
,
F.
,
de Meatza
,
I.
,
Subburaj
,
T.
,
Tsiplakides
,
D.
,
Argyropoulos
,
D. P.
,
Balomenou
,
S.
,
Landa-Medrano
,
I.
,
Eguia-Barrio
,
A.
,
Strataki
,
N.
, and
Nestoridi
,
M.
,
2021
, “
Elucidation of the Influence of Operating Temperature in LiNi0.8Co0.15Al0.05O2/Silicon and LiNi0.8Co0.15Al0.05O2/Graphite Pouch Cells Batteries Cycle-Life Degradation
,”
J. Energy Storage
,
41
, p.
102989
.
4.
Chen
,
X.
,
Li
,
H.
,
Yan
,
Z.
,
Cheng
,
F.
, and
Chen
,
J.
,
2019
, “
Structure Design and Mechanism Analysis of Silicon Anode for Lithium-Ion Batteries
,”
Sci. China Mater.
,
62
(
11
), pp.
1515
1536
.
5.
Jin
,
Y.
,
Kneusels
,
N. J. H.
,
Marbella
,
L. E.
,
Castillo-Martínez
,
E.
,
Magusin
,
P. C. M. M.
,
Weatherup
,
R. S.
,
Jónsson
,
E.
,
Liu
,
T.
,
Paul
,
S.
, and
Grey
,
C. P.
,
2018
, “
Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium-Ion Batteries With NMR Spectroscopy
,”
J. Am. Chem. Soc.
,
140
(
31
), pp.
9854
9867
.
6.
Liu
,
Y.
,
Zhou
,
G.
,
Liu
,
K.
, and
Cui
,
Y.
,
2017
, “
Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity
,”
Acc. Chem. Res.
,
50
(
12
), pp.
2895
2905
.
7.
Arai
,
J.
, and
Nakahigashi
,
R.
,
2017
, “
Study of Li Metal Deposition in Lithium Ion Battery During Low-Temperature Cycle Using In Situ Solid-State 7 Li Nuclear Magnetic Resonance
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
A3403
A3409
.
8.
Dong
,
X.
,
Wang
,
Y. G.
, and
Xia
,
Y.
,
2021
, “
Promoting Rechargeable Batteries Operated at Low Temperature
,”
Acc. Chem. Res.
,
54
(
20
), pp.
3883
3894
.
9.
Li
,
Q.
,
Lu
,
D.
,
Zheng
,
J.
,
Jiao
,
S.
,
Luo
,
L.
,
Wang
,
C. M.
,
Xu
,
K.
,
Zhang
,
J. G.
, and
Xu
,
W.
,
2017
, “
Li+ Desolvation Dictating Lithium-Ion Battery’s Low-Temperature Performances
,”
ACS Appl. Mater. Interfaces
,
9
(
49
), pp.
42761
42768
.
10.
Wu
,
H.
, and
Cui
,
Y.
,
2012
, “
Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
,”
Nano Today
,
7
(
5
), pp.
414
429
.
11.
Yang
,
J.
,
Li
,
J.
,
Yang
,
Z.
,
Liu
,
J.
,
Xiang
,
Y.
, and
Wu
,
F.
,
2022
, “
Self-Healing Silicon Anode via the Addition of GaInSn-Encapsulated Microcapsules
,”
ACS Appl. Energy Mater.
,
5
(
10
), pp.
12945
12952
.
12.
Li
,
X.
,
Xu
,
C.
,
Xia
,
T.
,
Wang
,
C.
,
Li
,
Z.
,
Zhou
,
Y.
,
Tang
,
Y.
, and
Wu
,
P.
,
2022
, “
Integrating Transition Metal Into Silicon/Carbon Anodes Towards Enhanced Lithium Storage
,”
J. Alloys Compd.
,
927
, p.
167085
.
13.
Fang
,
K.
,
Wang
,
M.
,
Xia
,
Y.
,
Li
,
J.
,
Ji
,
Q.
,
Yin
,
S.
,
Xie
,
S.
, et al
,
2017
, “
Facile Fabrication of Silicon Nanoparticle Lithium-Ion Battery Anode Reinforced With Copper Nanoparticles
,”
Dig. J. Nanomater. Biostructures
,
12
(
2
), pp.
243
253
.
14.
Holoubek
,
J.
,
Yu
,
M.
,
Yu
,
S.
,
Li
,
M.
,
Wu
,
Z.
,
Xia
,
D.
,
Bhaladhare
,
P.
, et al
,
2020
, “
An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation
,”
ACS Energy Lett.
,
5
(
5
), pp.
1438
1447
.
15.
Holoubek
,
J.
,
Liu
,
H.
,
Wu
,
Z.
,
Yin
,
Y.
,
Xing
,
X.
,
Cai
,
G.
,
Yu
,
S.
,
Zhou
,
H.
,
Pascal
,
T. A.
, and
Chen
,
Z.
,
2021
, “
Tailoring Electrolyte Solvation for Li Metal Batteries Cycled at Ultra-Low Temperature
,”
Nat. Energy
,
6
(
3
), pp.
303
313
.
16.
Mennel
,
J. A.
, and
Chidambaram
,
D.
,
2023
, “
A Review on the Development of Electrolytes for Lithium-Based Batteries for Low Temperature Applications
,”
Front. Energy
,
17
(
1
), pp.
1
29
.
17.
Bachand
,
G.
, and
Mennel
,
J.
,
2023
, “
Improved Performance of Silicon Anodes Using Copper Nanoparticles as Additive
,”
ASME J. Electrochem. Energy Convers. Storage
,
20
(
4
), p.
041009
.
18.
Smart
,
M. C.
,
Ratnakumar
,
B. V.
,
Ewell
,
R. C.
,
Surampudi
,
S.
,
Puglia
,
F. J.
, and
Gitzendanner
,
R.
,
2018
, “
The Use of Lithium-Ion Batteries for JPL’s Mars Missions
,”
Electrochim. Acta
,
268
, pp.
27
40
.
19.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2003
, “
The Low Temperature Performance of Li-Ion Batteries
,”
J. Power Sources
,
115
(
1
), pp.
137
140
.
You do not currently have access to this content.