Abstract

A novel after-burner used for the heat-up and normal operating conditions of a metal-supported planar solid oxide fuel cell (SOFC) system, is designed and experimentally studied in this paper. The burner construction and the calculation of maximum burner power are shown in detail. Meanwhile, its static characteristics are researched through the influence of excess air ratio (ER), air velocity, inlet air temperature, and fuel utilization rate (Uf) and its transient characteristics are researched through the processes of burner start-up, burner operating state switch, and stack start-up. The results suggest that the best ER value gets larger with the increased burner power. The air velocity is better controlled within 3 m/s to prevent the influence of a lifted flame. High inlet air temperature can extend the lean combustion range and reduces incomplete combustion products, but large ER mutations should still be avoided. In the case of anode off-gas combusting with cathode off-gas, there are nearly zero emissions. Meanwhile, the flue gas temperature decreases to about 760 °C because of enlarged heat loss, but it is minimally influenced by Uf. Under the static condition, the optimal point with both controlled temperature and lowest emissions can be obtained in a wide range, and the after-burner can well adapt to various operating states of the stack. Under the transient condition, the after-burner has good response performance with much shorter time in burner start-up and burner operating state switch than conventional porous media ones. It can start up the stack in 1715 s.

References

1.
Ellabban
,
O.
,
Abu-Rub
,
H.
, and
Blaabjerg
,
F.
,
2014
, “
Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
748
764
.
2.
Zhu
,
P.
,
Yao
,
J.
,
Qian
,
C.
,
Yang
,
F.
,
Porpatham
,
E.
,
Zhang
,
Z.
, and
Wu
,
Z.
,
2020
, “
High-Efficiency Conversion of Natural Gas Fuel to Power by an Integrated System of SOFC, HCCI Engine, and Waste Heat Recovery: Thermodynamic and Thermo-Economic Analyses
,”
Fuel
,
275
, p.
117883
.
3.
Chung
,
T. D.
,
Chyou
,
Y. P.
,
Hong
,
W. T.
,
Cheng
,
Y. N.
, and
Lin
,
K. F.
,
2007
, “
Influence of Energy Recuperation on the Efficiency of a Solid Oxide Fuel Cell Power System
,”
Energy Fuels
,
21
(
1
), pp.
314
321
.
4.
Singhal
,
S. C.
, and
Kendall
,
K.
,
2003
,
High Temperature Solid Oxide Fuel Cells: Fundamentals Design and Applications
,
Elsevier
,
Oxford
, pp.
1
22
.
5.
O’Hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2016
,
Fuel Cell Fundamentals
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
202
213
.
6.
Chung
,
T. D.
,
Hong
,
W. T.
,
Chyou
,
Y. P.
,
Yu
,
D. D.
,
Lin
,
K. F.
, and
Lee
,
C. H.
,
2008
, “
Efficiency Analyses of Solid Oxide Fuel Cell Power Plant Systems
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
933
941
.
7.
Faro
,
M. L.
,
Antonucci
,
V.
,
Antonucci
,
P. L.
, and
Aricò
,
A. S.
,
2012
, “
Fuel Flexibility: A Key Challenge for SOFC Technology
,”
Fuel
,
102
, pp.
554
559
.
8.
Zhu
,
T.
,
Yang
,
Z.
, and
Han
,
M.
,
2015
, “
Performance Evaluation of Solid Oxide Fuel Cell With In-Situ Methane Reforming
,”
Fuel
,
161
, pp.
168
173
.
9.
Minh
,
N. Q.
,
1993
, “
Ceramic Fuel Cells
,”
J. Am. Ceram. Soc.
,
76
(
3
), pp.
563
588
.
10.
Corigliano
,
O.
, and
Fragiacomo
,
P.
,
2017
, “
Numerical Modeling of an Indirect Internal CO2 Reforming Solid Oxide Fuel Cell Energy System Fed by Biogas
,”
Fuel
,
196
, pp.
352
361
.
11.
Son
,
J.
,
Hwang
,
S.
,
Hong
,
S.
,
Heo
,
S.
, and
Kim
,
Y. B.
,
2020
, “
Parameter Study on Solid Oxide Fuel Cell Heat Up Process to Reaction Starting Temperature
,”
Int. J. Precis. Eng. Manuf. - Green Technol.
,
7
(
6
), pp.
1073
1083
.
12.
Montross
,
C. S.
,
Yokokawa
,
H.
, and
Dokiya
,
M.
,
2002
, “
Thermal Stresses in Planar Solid Oxide Fuel Cells Due to Thermal Expansion Differences
,”
Br. Ceram. Trans.
,
101
(
3
), pp.
85
93
.
13.
Damm
,
D. L.
, and
Fedorov
,
A. G.
,
2005
, “
Reduced-Order Transient Thermal Modeling for SOFC Heating and Cooling
,”
J. Power Sources
,
159
(
2
), pp.
956
967
.
14.
Winkler
,
W.
, and
Lorenz
,
H.
,
2002
, “
Design Studies of Mobile Applications With SOFC-Heat Engine Modules
,”
J. Power Sources
,
106
(
1–2
), pp.
338
343
.
15.
Shin
,
H. K.
,
Shin
,
H.
,
Cho
,
S. Y.
, and
Hong
,
K. S.
,
2005
, “
Phase Evolution and Dielectric Properties of MgTiO3-CaTiO3 Based Ceramic Sintered With Lithium Borosilicate Glass for Application to Low Temperature Co-Fired Ceramics
,”
J. Am. Ceram. Soc.
,
88
(
9
), pp.
2461
2465
.
16.
Hui
,
R.
,
Berghaus
,
J. O.
,
Decès-Petit
,
C.
,
Qu
,
W.
,
Yick
,
S.
,
Legoux
,
J. G.
, and
Moreau
,
C.
,
2009
, “
High Performance Metal-Supported Solid Oxide Fuel Cells Fabricated by Thermal Spray
,”
J. Power Sources
,
191
(
2
), pp.
371
376
.
17.
Lee
,
C.
, and
Bae
,
J.
,
2008
, “
Fabrication and Characterization of Metal-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
,
176
(
1
), pp.
62
69
.
18.
Montero
,
X.
,
Tietz
,
F.
,
Stöver
,
D.
,
Cassir
,
M.
, and
Villarreal
,
I.
,
2009
, “
Evaluation of Commercial Alloys as Cathode Current Collector for Metal- Supported Tubular Solid Oxide Fuel Cells
,”
Corros. Sci.
,
51
(
1
), pp.
110
118
.
19.
Bance
,
P.
,
Brandon
,
N. P.
,
Girvan
,
B.
,
Holbeche
,
P.
,
O’Dea
,
S.
, and
Steele
,
B. C. H.
, “
Spinning-Out a Fuel Cell Company From a UK University-2 Years of Progress at Ceres Power
,”
J. Power Sources
,
131
(
1–2
), pp.
86
90
.
20.
Matus
,
Y. B.
,
DeJonghe
,
L. C.
,
Jacobson
,
C. P.
, and
Visco
,
S. J.
,
2005
, “
Metal-Supported Solid Oxide Fuel Cell Membranes for Rapid Thermal Cycling
,”
Solid State Ion.
,
176
(
5–6
), pp.
443
449
.
21.
Tucker
,
M. C.
,
Lau
,
G. Y.
,
Jacobson
,
C. P.
,
DeJonghe
,
L. C.
, and
Visco
,
S. J.
,
2007
, “
Performance of Metal- Supported SOFCs With Infiltrated Electrodes
,”
J. Power Sources
,
171
(
2
), pp.
477
482
.
22.
Tucker
,
M. C.
,
Jacobson
,
C. P.
,
DeJonghe
,
L. C.
, and
Visco
,
S. J.
,
2006
, “
A Braze System for Sealing Metal-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
,
160
(
2
), pp.
1049
1057
.
23.
Barzi
,
Y. M.
,
Ghassemi
,
M.
, and
Hamedi
,
M. H.
,
2008
, “
Numerical Analysis of Start-Up Operation of a Tubular Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
34
(
4
), pp.
2015
2025
.
24.
Kobayashi
,
Y.
,
Kosaka
,
K.
,
Tomida
,
K.
,
Matake
,
N.
,
Ito
,
K.
, and
Sasaki
,
K.
,
2014
, “
Start-Up Characteristics of Segmented-In-Series Tubular SOFC Power Modules Improved by Catalytic Combustion at Cathodes
,”
Fuel Cells
,
14
(
6
), pp.
1028
1035
.
25.
Leah
,
R.
,
Bone
,
A.
,
Hammer
,
E.
,
Selcuk
,
A.
,
Rahman
,
M.
,
Clare
,
A.
,
Rees
,
L.
, et al
,
2017
, “
Development of High Efficiency Steel Cell Technology for Multiple Applications
,”
ECS Trans.
,
78
(
1
), pp.
2005
2014
.
26.
Halinen
,
M.
,
Thomann
,
O.
, and
Kiviaho
,
J.
,
2014
, “
Experimental Study of SOFC System Heat-Up Without Safety Gases
,”
Int. J. Hydrogen Energy
,
39
(
1
), pp.
552
561
.
27.
Apfel
,
H.
,
Rzepka
,
M.
,
Tu
,
H.
, and
Stimming
,
U.
,
2006
, “
Thermal Start-Up Behavior and Thermal Management of SOFC’s
,”
J. Power Sources
,
154
(
2
), pp.
370
378
.
28.
Huang
,
Y.
,
2009
,
Combustion and Combustors
,
Beihang University Press
,
Beijing
, pp.
27
44
.
29.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2004
, “
Anode-Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell. I: Model-Based Steady-State Performance
,”
J. Power Sources
,
138
(
1–2
), pp.
120
136
.
30.
Leah
,
R. T.
,
Brandon
,
N. P.
, and
Aguiar
,
P.
,
2005
, “
Modelling of Cells, Stacks and Systems Based Around Metal-Supported Planar IT-SOFC Cells With CGO Electrolytes Operating at 500-600 °C
,”
J. Power Sources
,
145
(
2
), pp.
336
352
.
31.
Dokiya
,
M.
,
2002
, “
SOFC System and Technology
,”
Solid State Ion.
,
152
, pp.
383
392
.
32.
Kim
,
Y.
,
Son
,
M.
, and
Lee
,
I. B.
,
2011
, “
Numerical Study of a Planar Solid Oxide Fuel Cell During Heat-Up and Start-Up Operation
,”
Ind. Eng. Chem. Res.
,
50
(
3
), pp.
1360
1368
.
33.
Chen
,
M. H.
, and
Jiang
,
T. L.
,
2011
, “
The Analyses of the Heat-Up Process of a Planar, Anode-Supported Solid Oxide Fuel Cell Using the Dual-Channel Heating Strategy
,”
Int. J. Hydrogen Energy
,
36
(
11
), pp.
6882
6893
.
34.
Leah
,
R.
,
Bone
,
A.
,
Lankin
,
M.
,
Selcuk
,
A.
,
Pierce
,
R.
,
Rees
,
L.
,
Corcoran
,
D.
, et al
,
2013
, “
Low-Cost, Redox-Stable, Low-Temperature SOFC Developed by Ceres Power for Multiple Applications: Latest Development Update
,”
ECS Trans.
,
57
(
1
), pp.
461
470
.
35.
Leah
,
R.
,
Bone
,
A.
,
Hammer
,
E.
,
Selcuk
,
A.
,
Rahman
,
M.
,
Clare
,
A.
,
Mukerjee
,
S.
, and
Selby
,
M.
,
2017
, “
Development Progress on the Ceres Power Steel Cell Technology Platform: Further Progress Towards Commercialization
,”
ECS Trans.
,
78
(
1
), pp.
87
95
.
36.
Sonntag
,
R. E.
,
Gordon
,
C. B.
, and
Wylen
,
J. V.
,
2003
,
Fundamentals of Thermodynamics
,
John Wiley & Sons
,
Hoboken, NJ
, p.
761
.
37.
Cinti
,
G.
, and
Hemmes
,
K.
,
2011
, “
Integration of Direct Carbon Fuel Cells With Concentrated Solar Power
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10198
10208
.
38.
Cinti
,
G.
,
Bidini
,
G.
, and
Hemmes
,
K.
,
2019
, “
Comparison of the Solid Oxide Fuel Cell System for Micro CHP Using Natural Gas With a System Using a Mixture of Natural Gas and Hydrogen
,”
Appl. Energy
,
238
, pp.
69
77
.
39.
Lee
,
M. J.
,
Noh
,
D. S.
, and
Lee
,
E. K.
,
2021
, “
Characteristics of Large-Area Porous Media Burner Applicable to Direct-Fired Non-Oxidizing Annealing Furnace
,”
Appl. Therm. Eng.
,
186
, p.
116489
.
40.
Bubnovich
,
V.
,
Hernandez
,
H.
,
Toledo
,
M.
, and
Flores
,
C.
,
2021
, “
Experimental Investigation of Flame Stability in the Premixed Propane-Air Combustion in Two-Section Porous Media Burner
,”
Fuel
,
291
, p.
120117
.
You do not currently have access to this content.