Abstract

Lithium-ion battery diagnostics and prognostics rely on measurements of electrical impedance, capacity, and voltage to infer the internal state of the battery. Mechanical changes to the cell structure represent an additional measure of the battery’s state because these changes are related to the overall battery health. As lithium-ion batteries are charged and discharged, lithium ions are inserted or removed from the anode and cathode, a process called intercalation and deintercalation. As lithium ions intercalate and de-intercalate, they can cause changes to the lattice of the electrode particles, resulting in volumetric changes. These volumetric changes cause mechanical stresses and strains on the lithium-ion battery electrodes, and subsequently, the whole cell’s thickness varies as it is charged and discharged. This paper presents a study on the use of surface-mounted strain gauges for in-situ measurement of structural changes to lithium-ion batteries, along with a characterization of the unit-to-unit differences in strain response. A neural network modeling structure is then used to predict the battery’s depth of discharge under dynamic discharge conditions.

References

1.
Sonwane
,
A.
,
Yuan
,
C.
, and
Xu
,
J.
,
2021
, “
Coupling Effect of State-of-Charge and Strain Rate on the Mechanical Behavior of Electrodes of 21700 Lithium-Ion Battery
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
020905
.
2.
Wu
,
L.
, and
Zhang
,
J.
,
2019
, “
Three-Dimensional Finite Element Study on Lithium Diffusion and Intercalation-Induced Stress in Polycrystalline LiCoO2 Using Anisotropic Material Properties
,”
ASME J. Electrochem. Energy Convers. Storage
,
16
(
2
), p.
021008
.
3.
Nguyen
,
T. D.
,
Deng
,
J.
,
Robert
,
B.
,
Chen
,
W.
, and
Siegmund
,
T.
,
2021
, “
Deformation Behavior of Single Prismatic Battery Cell Cases and Cell Assemblies Loaded by Internal Pressure
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
4
), p.
040901
.
4.
Reimers
,
J. N.
, and
Dahn
,
J. R.
,
1992
, “
Electrochemical and In situ X-ray Diffraction Studies of Lithium Intercalation in LixCoO2
,”
J. Electrochem. Soc.
,
139
(
8
), pp.
2091
2097
.
5.
Yin
,
R.-Z.
,
Kim
,
Y.-S.
,
Shin
,
S.-J.
,
Jung
,
I.
,
Kim
,
J.-S.
, and
Jeong
,
S.-K.
,
2012
, “
In situ XRD Investigation and Thermal Properties of Mg Doped LiCoO2 for Lithium Ion Batteries
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
A253
A258
.
6.
Padhi
,
K.
,
Nanjundaswamy
,
K. S.
, and
Goodenough
,
J. B.
,
1997
, “
Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
144
(
2
), pp.
1188
1194
.
7.
Saïdi
,
M. Y.
,
Barker
,
J.
, and
Koksbang
,
R.
,
1996
, “
Structural and Electrochemical Investigation of Lithium Insertion in the Li1−X Mn2O4 Spinel Phase
,”
Electrochim. Acta
,
41
(
2
), pp.
199
204
.
8.
Dahn
,
J.
,
Fong
,
R.
, and
Spoon
,
M.
,
1990
, “
Suppression of Staging in Lithium-Intercalated Carbon by Disorder in the Host
,”
Phys. Rev. B
,
42
(
10
), pp.
6424
6432
.
9.
Dahn
,
J.
,
1991
, “
Phase Diagram of LixC6
,”
Phys. Rev. B
,
44
(
17
), pp.
9170
9177
.
10.
Sethuraman
,
V. A.
,
2010
, “
Surface Structural Disordering in Graphite upon Lithium Intercalation/Deintercalation
,”
J. Power Sources
,
195
(
11
), pp.
3655
3660
.
11.
Nadimpalli
,
S.
,
Sethuraman
,
V.
,
Abraham
,
D.
,
Bower
,
A.
, and
Guduru
,
P.
,
2015
, “
Stress Evolution in Lithium-Ion Composite Electrodes During Electrochemical Cycling and Resulting Internal Pressures on the Cell Casing
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2656
A2663
.
12.
Wang
,
X.
,
Sone
,
Y.
, and
Kuwajima
,
S.
,
2004
, “
In Situ Investigation of the Volume Change in Li-Ion Cell With Charging and Discharging
,”
J. Electrochem. Soc.
,
151
(
2
), pp.
A273
A280
.
13.
Wang
,
X.
,
Sone
,
Y.
,
Segami
,
G.
,
Naito
,
H.
,
Yamada
,
C.
, and
Kibe
,
K.
,
2007
, “
Understanding Volume Change in Lithium-Ion Cells During Charging and Discharging Using In Situ Measurements
,”
J. Electrochem. Soc.
,
154
(
1
), pp.
A14
A21
.
14.
Mohan
,
S.
,
Kim
,
Y.
,
Siegel
,
J. B.
,
Samad
,
N. A.
, and
Stefanopoulou
,
A. G.
,
2014
, “
A Phenomenological Model of Bulk Force in a Li-Ion Battery Pack and its Application to State of Charge Estimation
,”
J. Electrochem. Soc.
,
161
(
14
), pp.
A2222
A2231
.
15.
Gibellini
,
E.
,
Lanciotti
,
C.
,
Giovanardi
,
R.
,
Bononi
,
M.
,
Davolio
,
G.
,
Marchetti
,
A.
, and
Fontanesi
,
C.
,
2016
, “
Dimensional Changes in Automotive Pouch Li-Ion Cells: A Combined Thermo-mechanical/Electrochemical Study
,”
J. Electrochem. Soc.
,
163
(
10
), pp.
A2304
A2311
.
16.
Oh
,
K.-Y.
,
Epureanu
,
B. I.
,
Siegel
,
J. B.
, and
Stefanopoulou
,
A. G.
,
2016
, “
Phenomenological Force and Swelling Models for Rechargeable Lithium-Ion Battery Cells
,”
J. Power Sources
,
310
, pp.
118
129
.
17.
Oh
,
K.-Y.
,
Siegel
,
J. B.
,
Secondo
,
L.
,
Kim
,
S. U.
,
Samad
,
N. A.
,
Qin
,
J.
,
Anderson
,
D.
, et al
,
2014
, “
Rate Dependence of Swelling in Lithium-Ion Cells
,”
J. Power Sources
,
267
, pp.
197
202
.
18.
Poloni
,
T.
,
Figueroa-Santos
,
M. A.
,
Siegel
,
J. B.
, and
Stefanopoulou
,
A. G.
, “
Integration of Non-monotonic Cell Swelling Characteristic for State-of-Charge Estimation
,”
Proceedings of the 2018 Annual American Control Conference
,
Milwaukee, WI
,
June 27–29, 2018
, pp.
2306
2311
.
19.
Rieger
,
B.
,
Erhard
,
S. V.
,
Rumpf
,
K.
, and
Jossen
,
A.
,
2016
, “
A New Method to Model the Thickness Change of a Commercial Pouch Cell During Discharge
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
A1566
A1575
.
20.
Rieger
,
B.
,
Schlueter
,
S.
,
Erhard
,
S. V.
, and
Jossen
,
A.
,
2016
, “
Strain Propagation in Lithium-Ion Batteries From the Crystal Structure to the Electrode Level
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
A1595
A1606
.
21.
Schiffer
,
Z. J.
,
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2016
, “
Strain Derivatives for Practical Charge Rate Characterization of Lithium-Ion Electrodes
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
A427
A433
.
22.
Lee
,
J. H.
,
Lee
,
H. M.
, and
Ahn
,
S.
,
2003
, “
Battery Dimensional Changes Occurring During Charge/Discharge Cycles—Thin Rectangular Lithium Ion and Polymer Cells
,”
J. Power Sources
,
119–121
, pp.
833
837
.
23.
Fu
,
R.
,
Xiao
,
M.
, and
Choe
,
S.-Y.
,
2013
, “
Modeling, Validation and Analysis of Mechanical Stress Generation and Dimension Changes of a Pouch Type High Power Li-Ion Battery
,”
J. Power Sources
,
224
, pp.
211
224
.
24.
Barker
,
J.
,
1999
, “
In-situ Measurement of the Thickness Changes Associated With Cycling of Prismatic Lithium Ion Batteries Based on LiMn2O4 and LiCoO2
,”
Electrochim. Acta
,
45
(
1–2
), pp.
235
242
.
25.
Sommer
,
L. W.
,
Kiesel
,
P.
,
Ganguli
,
A.
,
Lochbaum
,
A.
,
Saha
,
B.
,
Schwartz
,
J.
,
Bae
,
C.-J.
,
Alamgir
,
M.
, and
Raghavan
,
A.
,
2015
, “
Fast and Slow Ion Diffusion Processes in Lithium Ion Pouch Cells During Cycling Observed With Fiber Optic Strain Sensors
,”
J. Power Sources
,
296
, pp.
46
52
.
26.
Sood
,
B. P.
,
Pecht
,
M. G.
, and
Osterman
,
M. D.
,
2018
,
Systems, Methods, and Devices for Health Monitoring of an Energy Storage Device, US Patent #US10014561B2
.
27.
Sood
,
B.
,
Hendricks
,
C.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2014
, “
Health Monitoring of Lithium-Ion Batteries
,”
Electron. Dev. Failure Anal.
,
16
(
2
), pp.
4
16
.
28.
Wu
,
Y.
,
Wang
,
Y.
,
Yung
,
W. K. C.
, and
Pecht
,
M.
,
2019
, “
Ultrasonic Health Monitoring of Lithium-Ion Batteries
,”
Electronics
,
8
(
751
), pp.
1
16
.
29.
Yu
,
X.
,
Feng
,
Z.
,
Ren
,
Y.
,
Henn
,
D.
,
Wu
,
Z.
,
An
,
K.
,
Wu
,
B.
,
Fau
,
C.
,
Li
,
C.
, and
Harris
,
S. J.
,
2018
, “
Simultaneous Operando Measurements of the Local Temperature, State of Charge, and Strain Inside a Commercial Lithium-Ion Battery Pouch Cell
,”
J. Electrochem. Soc.
,
165
(
7
), pp.
A1578
A1585
.
30.
Zhao
,
Y.
,
Spingler
,
F. B.
,
Patel
,
Y.
,
Offer
,
G. J.
, and
Jossen
,
A.
,
2019
, “
Localized Swelling Inhomogeneity Detection in Lithium-Ion Cells Using Multi-dimensional Laser Scanning
,”
J. Electrochem. Soc.
,
166
(
2
), pp.
A27
A34
.
31.
Hendricks
,
C.
,
Williard
,
N.
,
Mathew
,
S.
, and
Pecht
,
M.
,
2015
, “
A Failure Modes, Mechanisms, and Effects Analysis (FMMEA) of Lithium-Ion Batteries
,”
J. Power Sources
,
297
, pp.
113
120
.
32.
Zhang
,
J.
, and
Lee
,
J.
,
2011
, “
A Review on Prognostics and Health Monitoring of Li-Ion Battery
,”
J. Power Sources
,
196
(
15
), pp.
6007
6014
.
33.
Piller
,
S.
,
Perrin
,
M.
, and
Jossen
,
A.
,
2001
, “
Methods for State of Charge Determination and Their Applications
,”
J. Power Sources
,
96
(
1
), pp.
113
120
.
34.
Saha
,
B.
,
Goebel
,
K.
, and
Christophersen
,
J.
,
2009
, “
Comparison of Prognostic Algorithms for Estimating Remaining Useful Life of Batteries
,”
Trans. Inst. Meas. Control
,
31
(
3–4
), pp.
293
308
.
35.
Ng
,
K. S.
,
Moo
,
C.-S.
,
Chen
,
Y.-P.
, and
Hsieh
,
Y.-C.
,
2009
, “
Enhanced Coulomb Counting Method for Estimating State of Charge and State of Health of Lithium-Ion Batteries
,”
Appl. Energy
,
86
(
9
), pp.
1506
1511
.
36.
Waag
,
W.
,
Fleischer
,
C.
, and
Sauer
,
D. U.
,
2014
, “
Critical Review of the Methods for Monitoring of Lithium-Ion Batteries in Electric and Hybrid Vehicles
,”
J. Power Sources
,
258
, pp.
321
339
.
37.
Aylor
,
J.
,
1992
, “
Battery State of Charge Indicator for Electric Wheelchairs
,”
IEEE Trans. Ind. Electron.
,
39
(
5
), pp.
398
409
.
38.
Plett
,
G.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs. Part 2: Modeling and Identification
,”
J. Power Sources
,
134
(
2
), pp.
262
276
.
39.
Li
,
J.
,
Klee Barillas
,
J.
,
Guenther
,
C.
, and
Danzer
,
M. A.
,
2013
, “
A Comparative Study of State of Charge Estimation Algorithms for LiFePO4 Batteries Used in Electric Vehicles
,”
J. Power Sources
,
230
, pp.
244
250
.
40.
Charkhgard
,
M.
, and
Farrokhi
,
M.
,
2010
, “
State of Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF
,”
IEEE Trans. Ind. Electron.
,
57
(
12
), pp.
4178
4187
.
41.
Cho
,
S.
,
Jeong
,
H.
,
Han
,
C.
,
Jin
,
S.
,
Lim
,
J. H.
, and
Oh
,
J.
,
2012
, “
State-of-Charge Estimation for Lithium-Ion Batteries Under Various Operating Conditions Using an Equivalent Circuit Model
,”
Comput. Chem. Eng.
,
41
, pp.
1
9
.
42.
He
,
W.
,
Williard
,
N.
,
Chen
,
C.
, and
Pecht
,
M.
,
2014
, “
State of Charge Estimation for Li-Ion Batteries Using Neural Network and Unscented Kalman-Based Error Correction
,”
Electr. Power Energy Syst.
,
62
, pp.
783
791
.
You do not currently have access to this content.