Abstract

The behavior of lithium-ion batteries (LIBs) under mechanical loading is a complex multiphysics process including mechanical deformation, internal short circuit, and thermal runaway. To deeply understand the mechanism of battery failure and accurately predict the onset of internal short circuit and thermal runaway, a multiphysics-based computation framework of LIBs is in pressing need. In this article, a multiphysics model that couples five submodels (mechanical model, internal short-circuit model, battery model, heat transfer model, and thermal runaway model) is established to predict the evolution of force, voltage, and temperature under steel ball compression. The suitable agreement between simulation results and experimental data of batteries with different state of charges demonstrates that the proposed model is capable of predicting the multiphysical behavior of the battery. Further, a systematic parametric study is conducted to investigate the short-circuit triggering and temperature rise of batteries under different conditions, and the workflow of battery safety optimal design is proposed by applying the multiphysics model.

References

1.
Wang
,
C.-Y.
,
Zhang
,
G.
,
Ge
,
S.
,
Xu
,
T.
,
Ji
,
Y.
,
Yang
,
X.-G.
, and
Leng
,
Y.
,
2016
, “
Lithium-Ion Battery Structure That Self-Heats at Low Temperatures
,”
Nature
,
529
(
7587
), pp.
515
518
.
2.
Jia
,
Y.
,
Li
,
J.
,
Yuan
,
C.
,
Gao
,
X.
,
Yao
,
W.
,
Lee
,
M.
, and
Xu
,
J.
,
2021
, “
Data-Driven Safety Risk Prediction of Lithium-Ion Battery
,”
Adv. Energy Mater.
,
11
(
18
), p.
2003868
.
3.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
.
4.
Fu
,
Y.
,
Lu
,
S.
,
Shi
,
L.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2018
, “
Ignition and Combustion Characteristics of Lithium Ion Batteries Under Low Atmospheric Pressure
,”
Energy
,
161
(
15
), pp.
38
45
.
5.
Yu
,
D.
,
Ren
,
D.
,
Dai
,
K.
,
Zhang
,
H.
,
Zhang
,
J.
,
Yang
,
B.
,
Ma
,
S.
,
Wang
,
X.
, and
You
,
Z.
,
2021
, “
Failure Mechanism and Predictive Model of Lithium-Ion Batteries Under Extremely High Transient Impact
,”
J. Energy Storage
,
43
, p.
103191
.
6.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
L.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Fail. Anal.
,
53
, pp.
97
110
.
7.
Baker
,
D. R.
, and
Verbrugge
,
M. W.
,
2019
, “
Modeling Overcharge at Graphite Electrodes: Plating and Dissolution of Lithium
,”
J. Electrochem. Soc.
,
167
(
1
), p.
013504
.
8.
Lopez
,
C. F.
,
Jeevarajan
,
J. A.
, and
Mukherjee
,
P. P.
,
2015
, “
Characterization of Lithium-Ion Battery Thermal Abuse Behavior Using Experimental and Computational Analysis
,”
J. Electrochem. Soc.
,
162
(
10
), pp.
A2163
A2173
.
9.
Liu
,
B.
,
Duan
,
X.
,
Yuan
,
C.
,
Wang
,
L.
,
Li
,
J.
,
Finegan
,
D. P.
,
Feng
,
B.
, and
Xu
,
J.
,
2021
, “
Quantifying and Modeling of Stress-Driven Short-Circuits in Lithium-Ion Batteries in Electrified Vehicles
,”
J. Mater. Chem. A
,
9
(
10
), pp.
7102
7113
.
10.
Liu
,
L.
,
Feng
,
X.
,
Zhang
,
M.
,
Lu
,
L.
,
Han
,
X.
,
He
,
X.
, and
Ouyang
,
M.
,
2020
, “
Comparative Study on Substitute Triggering Approaches for Internal Short Circuit in Lithium-Ion Batteries
,”
Appl. Energy
,
259
(
1
), p.
114143
.
11.
Paul
,
N.
,
Wandt
,
J.
,
Seidlmayer
,
S.
,
Schebesta
,
S.
,
Mühlbauer
,
M. J.
,
Dolotko
,
O.
,
Gasteiger
,
H. A.
, and
Gilles
,
R.
,
2017
, “
Aging Behavior of Lithium Iron Phosphate Based 18650-Type Cells Studied by In Situ Neutron Diffraction
,”
J. Power Sources
,
345
(
31
), pp.
85
96
.
12.
Yang
,
X.-G.
,
Leng
,
Y.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C.-Y.
,
2017
, “
Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition From Linear to Nonlinear Aging
,”
J. Power Sources
,
360
(
31
), pp.
28
40
.
13.
Jia
,
Y.
,
Uddin
,
M.
,
Li
,
Y.
, and
Xu
,
J.
,
2020
, “
Thermal Runaway Propagation Behavior Within 18,650 Lithium-Ion Battery Packs: A Modeling Study
,”
J. Energy Storage
,
31
, p.
101668
.
14.
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
(
1
), pp.
172
184
.
15.
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
(
15
), pp.
284
292
.
16.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
(
15
), pp.
180
189
.
17.
Jia
,
Y.
,
Gao
,
X.
,
Mouillet
,
J.-B.
,
Terrier
,
J.-M.
,
Lombard
,
P.
, and
Xu
,
J.
,
2021
, “
Effective Thermo-Electro-Mechanical Modeling Framework of Lithium-Ion Batteries Based on a Representative Volume Element Approach
,”
J. Energy Storage
,
33
, p.
102090
.
18.
Huang
,
Z.
,
Liu
,
J.
,
Zhai
,
H.
, and
Wang
,
Q.
,
2021
, “
Experimental Investigation on the Characteristics of Thermal Runaway and Its Propagation of Large-Format Lithium Ion Batteries Under Overcharging and Overheating Conditions
,”
Energy
,
233
(
15
), p.
121103
.
19.
Feng
,
X.
,
Ren
,
D.
,
He
,
X.
, and
Ouyang
,
M.
,
2020
, “
Mitigating Thermal Runaway of Lithium-Ion Batteries
,”
Joule
,
4
(
4
), pp.
743
770
.
20.
Jia
,
Y.
,
Yin
,
S.
,
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2019
, “
Unlocking the Coupling Mechanical-Electrochemical Behavior of Lithium-Ion Battery Upon Dynamic Mechanical Loading
,”
Energy
,
166
(
1
), pp.
951
960
.
21.
Yuan
,
C.
,
Gao
,
X.
,
Wong
,
H. K.
,
Feng
,
B.
, and
Xu
,
J.
,
2019
, “
A Multiphysics Computational Framework for Cylindrical Battery Behavior Upon Mechanical Loading Based on LS-DYNA
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1160
A1169
.
22.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Yin
,
S.
,
Yuan
,
C.
,
Hu
,
Z.
,
Wang
,
L.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Safety Issues Caused by Internal Short Circuits in Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
6
(
43
), pp.
21475
21484
.
23.
Yin
,
S.
,
Hong
,
Z.
,
Hu
,
Z.
,
Liu
,
B.
,
Gao
,
X.
,
Li
,
Y.
, and
Xu
,
J.
,
2020
, “
Fabrication and Multiphysics Modeling of Modified Carbon Fiber as Structural Anodes for Lithium-Ion Batteries
,”
J. Power Sources
,
476
(
15
), p.
228532
.
24.
Jia
,
Y.
,
Liu
,
B.
,
Hong
,
Z.
,
Yin
,
S.
,
Finegan
,
D. P.
, and
Xu
,
J.
,
2020
, “
Safety Issues of Defective Lithium-Ion Batteries: Identification and Risk Evaluation
,”
J. Mater. Chem. A
,
8
(
25
), pp.
12472
12484
.
25.
Gao
,
X.
,
Lu
,
W.
, and
Xu
,
J.
,
2020
, “
Modeling Framework for Multiphysics-Multiscale Behavior of Si–C Composite Anode
,”
J. Power Sources
,
449
(
15
), p.
227501
.
26.
Wang
,
L.
,
Jia
,
Y.
, and
Xu
,
J.
,
2021
, “
Mechanistic Understanding of the Electrochemo-Dependent Mechanical Behaviors of Battery Anodes
,”
J. Power Sources
,
510
(
31
), p.
230428
.
27.
Gao
,
X.
,
He
,
P.
,
Ren
,
J.
, and
Xu
,
J.
,
2019
, “
Modeling of Contact Stress Among Compound Particles in High Energy Lithium-Ion Battery
,”
Energy Storage Mater.
,
18
, pp.
23
33
.
28.
Gao
,
X.
,
Lu
,
W.
, and
Xu
,
J.
,
2021
, “
Unlocking Multiphysics Design Guidelines on Si/C Composite Nanostructures for High-Energy-Density and Robust Lithium-Ion Battery Anode
,”
Nano Energy
,
81
, p.
105591
.
29.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.
30.
Miranda
,
D.
,
Costa
,
C. M.
,
Almeida
,
A. M.
, and
Lanceros-Méndez
,
S.
,
2016
, “
Computer Simulations of the Influence of Geometry in the Performance of Conventional and Unconventional Lithium-Ion Batteries
,”
Appl. Energy
,
165
(
1
), pp.
318
328
.
31.
Nyman
,
A.
,
Zavalis
,
T. G.
,
Elger
,
R.
,
Behm
,
M.
, and
Lindbergh
,
G.
,
2010
, “
Analysis of the Polarization in a Li-Ion Battery Cell by Numerical Simulations
,”
J. Electrochem. Soc.
,
157
(
11
), p.
A1236
.
You do not currently have access to this content.