Abstract

Proton exchange membrane fuel cell (PEMFC) is a crucial route for energy saving, emission reduction, and the development of new energy vehicles because of its high power density, high energy density, as well as the low operating temperature which corresponds to fast starting and power matching. However, the rare and expensive Pt resource greatly hinders the mass production of the fuel cell, and the development of highly active and durable non-precious metal catalysts toward the oxygen reduction reaction (ORR) in the cathode is considered to be the ultimate solution. In this article, a highly active and durable Fe-N-C catalyst was facilely derived from metal-organic framework (MOF) materials, and a favorable structure of carbon nanotubes (CNTs) was formed, which accounts for a desired good durability. The as-optimized catalyst has a half-wave potential of 0.84 V for the ORR, which is comparable to that of commercial Pt/C. More attractively, it has good stabilities both in rotating disk electrode (RDE) and single-cell tests, which provides a large practical application potential in the replacement of Pt catalyst as the ORR electrocatalyst in fuel cells.

References

1.
Jacobson
,
M. Z.
,
2009
, “
Review of Solutions to Global Warming, Air Pollution, and Energy Security
,”
Energy Environ. Sci.
,
2
(
2
), pp.
148
173
.
2.
Jaouen
,
F.
,
Proietti
,
E.
,
Lefèvre
,
M.
,
Chenitz
,
R.
,
Dodelet
,
J.-P.
,
Wu
,
G.
,
Chung
,
H. T.
,
Johnston
,
C. M.
, and
Zelenay
,
P.
,
2011
, “
Recent Advances in Non-Precious Metal Catalysis for Oxygen-Reduction Reaction in Polymer Electrolyte Fuel Cells
,”
Energy Environ. Sci.
,
4
(
1
), pp.
114
130
.
3.
He
,
Y.
,
Tan
,
Q.
,
Lu
,
L.
,
Sokolowski
,
J.
, and
Wu
,
G.
,
2019
, “
Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction in PEM Fuel Cells: Self-Template Synthesis Approach to Enhancing Catalytic Activity and Stability
,”
Electrochem. Energy Rev.
,
2
(
2
), pp.
231
251
.
4.
Papageorgopoulos
,
D.
,
2018
, Fuel Cells R&D Overview. https://www.hydrogen.energy.gov/pdfs/review18/fc01_papageorgopoulos_2018_o.pdf
5.
Vesborg
,
P. C. K.
, and
Jaramillo
,
T. F.
,
2012
, “
Addressing the Terawatt Challenge: Scalability in the Supply of Chemical Elements for Renewable Energy
,”
RSC Adv.
,
2
(
21
), pp.
7933
7947
.
6.
Platinum Group Metals (PGM)
,
2020
, “
JM Market Report: Feb 2020
,”
Focus Catalysts
,
2020
(
4
), pp.
1351
4180
.
7.
Chen
,
Z.
,
Higgins
,
D.
,
Yu
,
A.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2011
, “
A Review on Non-Precious Metal Electrocatalysts for PEM Fuel Cells
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3167
3192
.
8.
Ding
,
L.
,
Tang
,
T.
, and
Hu
,
J.
,
2021
, “
Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts
,”
Acta Phys.-Chim. Sin.
,
37
(
9
), p.
2010048
.
9.
Zhou
,
M.
,
Wang H
,
L.
, and
Guo
,
S.
,
2016
, “
Towards High-Efficiency Nanoelectrocatalysts for Oxygen Reduction Through Engineering Advanced Carbon Nanomaterials
,”
Chem. Soc. Rev.
,
45
(
5
), pp.
1273
1307
.
10.
Chang
,
S.
,
Wang
,
C.
,
Du
,
H.
,
Hsu
,
H.
,
Kang
,
C.
,
Chen
,
C.
,
Wu
,
J.
,
Yen
,
S.
,
Huang
,
W.
,
Chen
,
L.
,
Lin
,
M.
, and
Chen
,
K.
,
2012
, “
Vitalizing Fuel Cells With Vitamins: Pyrolyzed Vitamin B12 as a Non-Precious Catalyst for Enhanced Oxygen Reduction Reaction of Polymer Electrolyte Fuel Cells
,”
Energy Environ. Sci.
,
5
(
1
), pp.
5305
5314
.
11.
Guo
,
M.
,
Wang
,
L.
,
Gao
,
Y.
, and
Li
,
G.
,
2019
, “
Trace Sulfur Promoted Fe, N-Codoped Carbon Black as Electrocatalyst for Oxygen Reduction Reaction
,”
Int. J. Hydrogen Energy
,
44
(
7
), pp.
3625
3635
.
12.
Sun
,
X.
,
Zhang
,
Y.
,
Song
,
P.
,
Pan
,
J.
,
Zhuang
,
L.
,
Xu
,
W.
, and
Xing
,
W.
,
2013
, “
Fluorine-Doped Carbon Blacks: Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction
,”
ACS Catal.
,
3
(
8
), pp.
1726
1729
.
13.
Zhang
,
J.
,
Lyu
,
Z.
,
Zhang
,
F.
,
Wang
,
L.
,
Xiao
,
P.
,
Yuan
,
K.
,
Lai
,
M.
, and
Chen
,
W.
,
2016
, “
Facile Synthesis of Hierarchical Porous Co3O4 Nanoboxes as Efficient Cathode Catalysts for Li-O2 Batteries
,”
J. Mater. Chem. A
,
4
(
17
), pp.
6350
6356
.
14.
Zhang
,
G.
,
Chenitz
,
R.
,
Lefèvre
,
M.
,
Sun
,
S.
, and
Dodelet
,
J. P.
,
2016
, “
Is Iron Involved in the Lack of Stability of Fe/N/C Electrocatalysts Used to Reduce Oxygen at the Cathode of PEM Fuel Cells?
,”
Nano Energy
,
29
, pp.
111
125
.
15.
Zhang
,
H.
,
Osgood
,
H.
,
Xie
,
X.
,
Shao
,
Y.
, and
Wu
,
G.
,
2017
, “
Engineering Nanostructures of PGM-Free Oxygen-Reduction Catalysts Using Metal-Organic Frameworks
,”
Nano Energy
,
31
, pp.
331
350
.
16.
Chen
,
Y.
,
Ji
,
S.
,
Wang
,
Y.
,
Dong
,
J.
,
Chen
,
W.
,
Li
,
Z.
,
Shen
,
R.
,
Zheng
,
L.
,
Zhuang
,
Z.
,
Wang
,
D.
, and
Li
,
Y.
,
2017
, “
Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
,”
Angew. Chem., Int. Ed.
,
56
(
24
), pp.
6937
6941
.
17.
Shah
,
S. S. A.
,
Peng
,
L.
,
Najam
,
T.
,
Cheng
,
C.
,
Wu
,
G.
,
Nie
,
Y.
,
Ding
,
W.
,
Qi
,
X.
,
Chen
,
S.
, and
Wei
,
Z.
,
2017
, “
Monodispersed Co in Mesoporous Polyhedrons: Fine-Tuning of ZIF-8 Structure With Enhanced Oxygen Reduction Activity
,”
Electrochim. Acta
,
251
, pp.
498
504
.
18.
Kang
,
S. F.
, and
Chang
,
H. M.
,
1997
, “
Coagulation of Textile Secondary Effluents With Fenton’s Reagent
,”
Water Sci. Technol.
,
36
(
12
), pp.
215
222
.
You do not currently have access to this content.