Durability and cost are the two major factors limiting the large-scale implementation of fuel cell technology for use in commercial, residential, or transportation applications. The conditioning cost is usually negligible for making proton exchange membrane fuel cells (PEMFCs) at R&D or demo stage with several tens of stacks each year. However, with industry's focus shifting from component development to commercial high-volume manufacturing, the conditioning process requires significant additional capital investments and operating costs, thus becomes one of the bottlenecks for PEMFC manufacturing, particularly at a high production volume (>1000 stack/year). To understand the mechanisms behind PEMFC conditioning, and to potentially reduce conditioning time or even to eliminate the conditioning process, the conditioning behaviors of commercial Nafion™ XL100 and Nafion® NRE 211 membranes were studied. The potential effects of the membrane additive on fuel cell conditioning were diagnosed using in situ electrochemical impedance spectroscopy (EIS). It was found that the membrane additive led to the significant variation of the charge transfer resistance in EIS during conditioning, which affected the conditioning behavior of the membrane electrode assembly (MEA).

References

1.
Yuan
,
X.
,
Zhang
,
S.
,
Sun
,
J.
, and
Wang
,
H.
,
2011
, “
A Review of Accelerated Conditioning for a Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
196
(
22
), pp.
9097
9106
.
2.
Zhiani
,
M.
, and
Majidi
,
S.
,
2013
, “
Effect of MEA Conditioning on PEMFC Performance and EIS Response Under Steady-State Condition
,”
Int. J. Hydrogen Energy
,
38
(
23
), pp.
9819
9825
.
3.
Coms
,
F. D.
,
Liu
,
H.
, and
Owejan
,
J. E.
,
2008
, “
Mitigation of Perfluorosulfonic Acid Membrane Chemical Degradation Using Cerium and Manganese Ions
,”
ECS Trans.
,
16
(
2
), pp.
1735
1747
.
4.
Lim
,
C.
,
Alavijeh
,
A. S.
,
Lauritzen
,
M.
,
Kolodziej
,
J.
,
Knights
,
S.
, and
Kjeang
,
E.
,
2015
, “
Fuel Cell Durability Enhancement With Cerium Oxide Under Combined Chemical and Mechanical Membrane Degradation
,”
ECS Electrochem. Lett.
,
4
(
4
), pp.
F29
F31
.
5.
Yang
,
Y.
,
Li
,
J.
, and
Wang
,
K.
,
2015
, “
Composite Proton Conducting Membrane With Low Degradation and Membrane Electrode Assembly for Fuel Cells
,” Ford Motor Co., Dearborn, MI, U.S. Patent No.
9101886B2
.https://patents.google.com/patent/US20120231367
6.
Bezmalinović
,
D.
,
Radošević
,
J.
, and
Barbir
,
F.
,
2015
, “
Initial Conditioning of Polymer Electrolyte Membrane Fuel Cell by Temperature and Potential Cycling
,”
Acta Chim. Slov.
,
62
(
1
), pp.
83
87
.
7.
Yuan
,
X.
,
Sun
,
J.
,
Wang
,
H.
, and
Li
,
H.
,
2012
, “
Accelerated Conditioning for a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
205
, pp.
340
344
.
8.
Zhiani
,
M.
,
Majidi
,
S.
, and
Taghiabadi
,
M. M.
,
2013
, “
Comparative Study of on‐Line Membrane Electrode Assembly Activation Procedures in Proton Exchange Membrane Fuel Cell
,”
Fuel Cells
,
13
(
5
), pp.
946
955
.
9.
Kumar
,
S. N.
,
Rajalakshmi
,
N.
, and
Dhathathreyan
,
K. S.
,
2013
, “
Efficient Power Conditioner for a Fuel Cell Stack-Ripple Current Reduction Using Multiphase Converter
,”
Smart Grid Renewable Energy
,
4
(
1
), pp.
53
56
.
10.
Antoine
,
O.
,
Bultel
,
Y.
, and
Durand
,
R.
,
2001
, “
Oxygen Reduction Reaction Kinetics and Mechanism on Platinum Nanoparticles Inside Nafion®
,”
J. Electroanal. Chem.
,
499
(
1
), pp.
85
94
.
11.
Piva
,
I.
, and
Barbir
,
F.
,
2016
, “
Inductive Phenomena at Low Frequencies in Impedance Spectra of Proton Exchange Membrane Fuel Cells—A Review
,”
J. Power Sources
,
326
, pp.
112
119
.
12.
Wagner
,
N.
, and
Gülzow
,
E.
,
2004
, “
Change of Electrochemical Impedance Spectra (EIS) With Time During CO-Poisoning of the Pt-Anode in a Membrane Fuel Cell
,”
J. Power Sources
,
127
(
1–2
), pp.
341
347
.
13.
Baker
,
A. M.
,
Mukundan
,
R.
,
Spernjak
,
D.
,
Judge
,
E. J.
,
Advani
,
S. G.
,
Prasad
,
A. K.
, and
Borup
,
R. L.
,
2016
, “
Cerium Migration During PEM Fuel Cell Accelerated Stress Testing
,”
J. Electrochem. Soc.
,
163
(
9
), pp.
F1023
F1031
.
14.
Lai
,
Y. H.
,
Rahmoeller
,
K. M.
,
Hurst
,
J. H.
,
Kukreja
,
R. S.
,
Atwan
,
M.
,
Maslyn
,
A. J.
, and
Gittleman
,
C. S.
,
2018
, “
Accelerated Stress Testing of Fuel Cell Membranes Subjected to Combined Mechanical/Chemical Stressors and Cerium Migration
,”
J. Electrochem. Soc.
,
165
(
6
), pp.
F3217
F3229
.
15.
Baker
,
A. M.
,
Babu
,
S. K.
,
Mukundan
,
R.
,
Advani
,
S. G.
,
Prasad
,
A. K.
,
Spernjak
,
D.
, and
Borupa
,
R. L.
,
2017
, “
Cerium Ion Mobility and Diffusivity Rates in Perfluorosulfonic Acid Membranes Measured via Hydrogen Pump Operation
,”
J. Electrochem. Soc.
,
164
(
12
), pp.
F1272
F1278
.
16.
Zaton
,
M.
,
Prelot
,
B.
,
Donzel
,
N.
,
Roziere
,
J.
, and
Jones
,
D. J.
,
2018
, “
Migration of Ce and Mn Ions in PEMFC and Its Impact on PFSA Membrane Degradation
,”
J. Electrochem. Soc.
,
165
(
6
), pp.
F3281
F3289
.
17.
Park
,
J.
, and
Kim
,
D.
,
2014
, “
Effect of Cerium/18-Crown-6-Ether Coordination Complex OH Quencher on the Properties of Sulfonated Poly(Ether Ether Ketone) Fuel Cell Electrolyte Membranes
,”
J. Membr. Sci.
,
469
, pp.
238
244
.
18.
Stewart
,
S. M.
,
Spernjak
,
D.
,
Borup
,
R.
,
Datye
,
A.
, and
Garzon
,
F.
,
2014
, “
Cerium Migration Through Hydrogen Fuel Cells During Accelerated Stress Testing
,”
ECS Electrochem. Lett.
,
3
(
4
), pp.
F19
F22
.
19.
Cheng
,
T. T.
,
Wessel
,
H. S.
, and
Knights
,
S.
,
2013
, “
Interactive Effects of Membrane Additives on PEMFC Catalyst Layer Degradation
,”
J. Electrochem. Soc.
,
160
(
1
), pp.
F27
F33
.
You do not currently have access to this content.