Lithium-ion batteries (LIBs) are the heart of electric vehicle because they are the main source of its power transmission. The current scientific challenges include the accurate and robust evaluation of battery state such as the discharging capacity so that the occurrence of unforeseen dire events can be reduced. State-of-the-art technologies focused extensively on evaluating the battery states based on the models, whose measurements rely on determination of parameters such as the voltage, current, and temperature. Experts have well argued that these models have poor accuracy, computationally expensive, and best suited for laboratory conditions. This forms the strong basis of conducting research on identifying and investigating the parameters that can quantify the battery state accurately. The unwanted, irreversible chemical and physical changes in the battery result in loss of active metals (lithium ions). This shall consequently result in decrease of capacity of the battery. Therefore, measuring the stack stress along with temperature of the battery can be related to its discharging capacity. This study proposes the evaluation of battery state of health (SOH) based on the mechanical parameter such as stack stress. The objective of this study will be to establish the fundamentals and the relationship between the battery state, the stack stress, and the temperature. The experiments were designed to validate the fundamentals, and the robust models are formulated using an evolutionary approach of genetic programming (GP). The findings from this study can pave the way for the design of new battery that incorporates the sensors to estimate its state accurately.

References

1.
Li
,
H.
,
Wang
,
Z.
,
Chen
,
L.
, and
Huang
,
X.
,
2009
, “
Research on Advanced Materials for Li-Ion Batteries
,”
Adv. Mater.
,
21
(
45
), pp.
4593
4607
.
2.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
3.
Wang
,
J.
,
Liua
,
P.
,
Hicks-Garner
,
J.
,
Sherman
,
E.
,
Soukiazian
,
S.
,
Verbrugge
,
M.
,
Tataria
,
H.
,
Musser
,
J.
, and
Finamore
,
P.
,
2011
, “
Cycle-Life Model for Graphite-LiFePO4 Cells
,”
J. Power Sources
,
196
(
8
), pp.
3942
3948
.
4.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
State of Health and Charge Measurements in Lithium-Ion Batteries Using Mechanical Stress
,”
J. Power Sources
,
269
, pp.
7
14
.
5.
Cannarella
,
J.
, and
Arnold
,
C. B.
,
2014
, “
Stress Evolution and Capacity Fade in Constrained Lithium-Ion Pouch Cells
,”
J. Power Sources
,
245
, pp.
745
751
.
6.
Wang
,
X.
,
Sone
,
Y.
, and
Kuwajima
,
S.
,
2004
, “
In Situ Investigation of the Volume Change in Li-Ion Cell With Charging and Discharging
,”
J. Electrochem. Soc.
,
151
(
2
), pp.
A273
A280
.
7.
Wang
,
X.
,
Sone
,
Y.
,
Segami
,
G.
,
Naito
,
H.
,
Yamada
,
C.
, and
Kibe
,
K.
,
2007
, “
Understanding Volume Change in Lithium-Ion Cells During Charging and Discharging Using In Situ Measurements
,”
J. Electrochem. Soc.
,
154
(
1
), pp.
A14
A21
.
8.
Koyama
,
Y.
,
Chin
,
T. E.
,
Rhyner
,
U.
,
Holman
,
R. K.
,
Hall
,
S. R.
, and
Chiang
,
Y. M.
,
2006
, “
Harnessing the Actuation Potential of Solid-State Intercalation Compounds
,”
Adv. Funct. Mater.
,
16
(
4
), pp.
492
498
.
9.
Mukhopadhyay
,
A.
,
Tokranov
,
A.
,
Xiao
,
X.
, and
Sheldon
,
B. W.
,
2012
, “
Stress Development Due to Surface Processes in Graphite Electrodes for Li-Ion Batteries: A First Report
,”
Electrochim. Acta
,
66
, pp.
28
37
.
10.
Liu
,
D.
,
Wang
,
Y.
,
Yuansen
,
X.
,
Liping
,
H.
,
Chen
,
J.
,
Wu
,
J.
,
Xu
,
R.
, and
Gao
,
Y.
,
2013
, “
On the Stress Characteristics of Graphite Anode in Commercial Pouch Lithium-Ion Battery
,”
J. Power Sources
,
232
, pp.
29
33
.
11.
Sethuraman
,
V. A.
,
Hardwick
,
L. J.
,
Srinivasan
,
V.
, and
Kostecki
,
R.
,
2010
, “
Surface Structural Disordering in Graphite Upon Lithium Intercalation/Deintercalation
,”
J. Power Sources
,
195
(
11
), pp.
3655
3660
.
12.
Peabody
,
C.
, and
Arnold
,
C. B.
,
2011
, “
The Role of Mechanically Induced Separator Creep in Lithium-Ion Battery Capacity Fade
,”
J. Power Sources
,
196
(
19
), pp.
8147
8153
.
13.
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
(
2
), pp.
453
460
.
14.
Chon
,
M.
,
Sethuraman
,
V. A.
,
McCormick
,
A.
,
Srinivasan
,
V.
, and
Guduru
,
P. R.
,
2011
, “
Real-Time Measurement of Stress and Damage Evolution During Initial Lithiation of Crystalline Silicon
,”
Phys. Rev. Lett.
,
107
(
4
), p.
45503
.
15.
Li
,
Z.
,
Lu
,
L.
,
Ouyang
,
M.
, and
Xiao
,
Y.
,
2011
, “
Modeling the Capacity Degradation of LiFePO4/Graphite Batteries Based on Stress Coupling Analysis
,”
J. Power Sources
,
196
(
22
), pp.
9757
9766
.
16.
Bucci
,
G.
,
Swamy
,
T.
,
Bishop
,
S.
,
Sheldon
,
B. W.
,
Chiang
,
Y. M.
, and
Carter
,
W. C.
,
2017
, “
The Effect of Stress on Battery-Electrode Capacity
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A645
A654
.
17.
Ji
,
L.
,
Guo
,
Z.
, and
Wu
,
Y.
,
2017
, “
Computational and Experimental Observation of Li‐Ion Concentration Distribution and Diffusion‐Induced Stress in Porous Battery Electrodes
,”
Energy Technol.
,
5
(
9
), pp.
1702
1711
.
18.
Cheng
,
X.
, and
Pecht
,
M.
,
2017
, “
In Situ Stress Measurement Techniques on Li-Ion Battery Electrodes: A Review
,”
Energies
,
10
(
5
), p.
591
.
19.
Chen
,
J.
,
Zhang
,
H.
, and
Weng
,
S.
,
2017
, “
Study on Nonlinear Identification SOFC Temperature Model Based on Particle Swarm Optimization–Least-Squares Support Vector Regression
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
3
), p.
031003
.
20.
Shah
,
A. A.
,
2017
, “
Surrogate Modeling for Spatially Distributed Fuel Cell Models With Applications to Uncertainty Quantification
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
1
), p.
011006
.
21.
Niu
,
Z.
,
Huang
,
Q.
,
Xin
,
B.
,
Qi
,
C.
,
Hu
,
J.
,
Chen
,
S.
, and
Li
,
Y.
,
2016
, “
Optimization of Bioleaching Conditions for Metal Removal From Spent Zinc‐Manganese Batteries Using Response Surface Methodology
,”
J. Chem. Technol. Biotechnol.
,
91
(
3
), pp.
608
617
.
22.
Garg
,
A.
,
Panda
,
B.
, and
Shankhwar
,
K.
,
2016
, “
Investigation of the Joint Length of Weldment of Environmental-Friendly Magnetic Pulse Welding Process
,”
Int. J. Adv. Manuf. Technol.
,
87
(
5–8
), pp.
2415
2426
.
23.
Huang
,
Y.
,
Gao
,
L.
,
Yi
,
Z.
,
Tai
,
K.
,
Kalita
,
P.
,
Prapainainar
,
P.
, and
Garg
,
A.
,
2018
, “
An Application of Evolutionary System Identification Algorithm in Modelling of Energy Production System
,”
Measurement
,
114
, pp.
122
131
.
24.
Garg
,
A.
,
Shankhwar
,
K.
,
Jiang
,
D.
,
Vijayaraghavan
,
V.
,
Panda
,
B. N.
, and
Panda
,
S. S.
,
2018
, “
An Evolutionary Framework in Modelling of Multi-Output Characteristics of the Bone Drilling Process
,”
Neural Comput. Appl.
,
29
(
11
), pp.
1233
1241
.
25.
Liu
,
X.
,
Wu
,
J.
,
Zhang
,
C.
, and
Zonghai
,
C.
,
2014
, “
Available Capacity Estimation of Electric Vehicle Batteries Based on Peukert Equation at Various Temperatures
,”
Appl. Mech. Mater.
,
535
, pp. 167–171.
26.
Shah
,
K.
,
Balsara
,
N.
,
Banerjee
,
S.
,
Chintapalli
,
M.
,
Cocco
,
A. P.
,
Chiu
,
W. K. S.
,
Lahiri
,
I.
,
Martha
,
S.
,
Mistry
,
A.
,
Mukherjee
,
P. P.
,
Ramadesigan
,
V.
,
Sharma
,
C. S.
,
Subramanian
,
V. R.
, and
Mitra
,
S.
,
2017
, “
State of the Art and Future Research Needs for Multiscale Analysis of Li-Ion Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
2
), p.
020801
.
27.
Liu
,
Z.
,
Mistry
,
A.
, and
Mukherjee
,
P. P.
,
2018
, “
Mesoscale Physicochemical Interactions in Lithium–Sulfur Batteries: Progress and Perspective
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(
1
), p.
010802
.
You do not currently have access to this content.