The microstructure of a fuel cell electrode largely determines the performance of the whole fuel cell system. In this regard, tomographic imaging is a valuable tool for the understanding and control of the electrode morphology. The distribution of pore- and feature-sizes within fuel cell electrodes covers several orders of magnitude, ranging from millimeters in the gas diffusion layer (GDL) down to few nanometers in the catalyst layer. This obligates the application of various tomographic methods for imaging every aspect of a fuel cell. This perspective evaluates the capabilities, limits, and challenges of each of these methods. Further, it highlights and suggests efforts toward the integration of multiple tomographic methods into single multiscale datasets, a venture which aims at large-scale, and morphologically fully resolved fuel cell reconstructions.

References

1.
Gröger
,
O.
,
Gasteiger
,
H. A.
, and
Suchsland
,
J.-P.
,
2015
, “
Review—Electromobility: Batteries or Fuel Cells?
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2605
A2622
.
2.
Litster
,
S.
, and
McLean
,
G.
,
2004
, “
PEM Fuel Cell Electrodes
,”
J. Power Sources
,
130
(
1–2
), pp.
61
76
.
3.
Wilson
,
M. S.
,
Valerio
,
J. A.
, and
Gottesfeld
,
S.
,
1995
, “
Low Platinum Loading Electrodes for Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers
,”
Electrochim. Acta
,
40
(
3
), pp.
355
363
.
4.
Lopez-Haro
,
M.
,
Guétaz
,
L.
,
Printemps
,
T.
,
Morin
,
A.
,
Escribano
,
S.
,
Jouneau
,
P.-H.
,
Bayle-Guillemaud
,
P.
,
Chandezon
,
F.
, and
Gebel
,
G.
,
2014
, “
Three-Dimensional Analysis of Nafion Layers in Fuel Cell Electrodes
,”
Nat. Commun.
,
5
, p.
5229
.
5.
Thiele
,
S.
,
Fürstenhaupt
,
T.
,
Banham
,
D.
,
Hutzenlaub
,
T.
,
Birss
,
V.
,
Ziegler
,
C.
, and
Zengerle
,
R.
,
2013
, “
Multiscale Tomography of Nanoporous Carbon-Supported Noble Metal Catalyst Layers
,”
J. Power Sources
,
228
, pp.
185
192
.
6.
Cindrella
,
L.
,
Kannan
,
A. M.
,
Lin
,
J. F.
,
Saminathan
,
K.
,
Ho
,
Y.
,
Lin
,
C. W.
, and
Wertz
,
J.
,
2009
, “
Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells—A Review
,”
J. Power Sources
,
194
(
1
), pp.
146
160
.
7.
Wargo
,
E. A.
,
Schulz
,
V. P.
,
Çeçen
,
A.
,
Kalidindi
,
S. R.
, and
Kumbur
,
E. C.
,
2013
, “
Resolving Macro- and Micro-Porous Layer Interaction in Polymer Electrolyte Fuel Cells Using Focused Ion Beam and X-Ray Computed Tomography
,”
Electrochim. Acta
,
87
, pp.
201
212
.
8.
Mayrhofer
,
K. J.
,
Meier
,
J. C.
,
Ashton
,
S. J.
,
Wiberg
,
G. K.
,
Kraus
,
F.
,
Hanzlik
,
M.
, and
Arenz
,
M.
,
2008
, “
Fuel Cell Catalyst Degradation on the Nanoscale
,”
Electrochem. Commun.
,
10
(
8
), pp.
1144
1147
.
9.
Gontard
,
L. C.
,
Dunin-Borkowski
,
R. E.
, and
Ozkaya
,
D.
,
2008
, “
Three-Dimensional Shapes and Spatial Distributions of Pt and PtCr Catalyst Nanoparticles on Carbon Black
,”
J. Microsc.
,
232
(
2
), pp.
248
259
.
10.
Schulenburg
,
H.
,
Schwanitz
,
B.
,
Linse
,
N.
,
Scherer
,
G. G.
,
Wokaun
,
A.
,
Krbanjevic
,
J.
,
Grothausmann
,
R.
, and
Manke
,
I.
,
2011
, “
3D Imaging of Catalyst Support Corrosion in Polymer Electrolyte Fuel Cells
,”
J. Phys. Chem. C
,
115
(
29
), pp.
14236
14243
.
11.
Dubau
,
L.
,
Castanheira
,
L.
,
Berthom
,
G.
, and
Maillard
,
F.
,
2013
, “
An Identical-Location Transmission Electron Microscopy Study on the Degradation of Pt/C Nanoparticles Under Oxidizing, Reducing and Neutral Atmosphere
,”
Electrochim. Acta
,
110
, pp.
273
281
.
12.
Perez-Alonso
,
F. J.
,
Elkjær
,
C. F.
,
Shim
,
S. S.
,
Abrams
,
B. L.
,
Stephens
,
I. E.
, and
Chorkendorff
,
I.
,
2011
, “
Identical Locations Transmission Electron Microscopy Study of Pt/C Electrocatalyst Degradation During Oxygen Reduction Reaction
,”
J. Power Sources
,
196
(
15
), pp.
6085
6091
.
13.
Ziegler
,
C.
,
Thiele
,
S.
, and
Zengerle
,
R.
,
2011
, “
Direct Three-Dimensional Reconstruction of a Nanoporous Catalyst Layer for a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
196
(
4
), pp.
2094
2097
.
14.
Hutzenlaub
,
T.
,
Becker
,
J.
,
Zengerle
,
R.
, and
Thiele
,
S.
,
2013
, “
How Coarsening the 3D Reconstruction of a Porous Material Influences Diffusivity and Conductivity Values
,”
ECS Electrochem. Lett.
,
2
(2), pp.
F14
F17
.
15.
Wargo
,
E. A.
,
Kotaka
,
T.
,
Tabuchi
,
Y.
, and
Kumbur
,
E. C.
,
2013
, “
Comparison of Focused Ion Beam Versus Nano-Scale X-Ray Computed Tomography for Resolving 3-D Microstructures of Porous Fuel Cell Materials
,”
J. Power Sources
,
241
, pp.
608
618
.
16.
Ostadi
,
H.
,
Rama
,
P.
,
Liu
,
Y.
,
Chen
,
R.
,
Zhang
,
X. X.
, and
Jiang
,
K.
,
2010
, “
3D Reconstruction of a Gas Diffusion Layer and a Microporous Layer
,”
J. Membr. Sci.
,
351
(
1–2
), pp.
69
74
.
17.
Müllner
,
T.
,
Zankel
,
A.
,
Mayrhofer
,
C.
,
Reingruber
,
H.
,
Höltzel
,
A.
,
Lv
,
Y.
,
Svec
,
F.
, and
Tallarek
,
U.
,
2012
, “
Reconstruction and Characterization of a Polymer-Based Monolithic Stationary Phase Using Serial Block-Face Scanning Electron Microscopy
,”
Langmuir
,
28
(
49
), pp.
16733
16737
.
18.
Micheva
,
K. D.
, and
Smith
,
S. J.
,
2007
, “
Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits
,”
Neuron
,
55
(
1
), pp.
25
36
.
19.
Caplan
,
J.
,
Niethammer
,
M.
,
Taylor
,
R. M.
, and
Czymmek
,
K. J.
,
2011
, “
The Power of Correlative Microscopy: Multi-Modal, Multi-Scale, Multi-Dimensional
,”
Curr. Opin. Struct. Biol.
,
21
(
5
), pp.
686
693
.
20.
Wacker
,
I.
, and
Schroeder
,
R. R.
,
2013
, “
Array Tomography
,”
J. Microsc.
,
252
(
2
), pp.
93
99
.
21.
Alekseev
,
A.
,
Efimov
,
A.
,
Loos
,
J.
,
Matsko
,
N.
, and
Syurik
,
J.
,
2014
, “
Three-Dimensional Imaging of Polymer Materials by Scanning Probe Tomography
,”
Eur. Polym. J.
,
52
, pp.
154
165
.
22.
Aleksandrova
,
E.
,
Hiesgen
,
R.
,
Friedrich
,
K. A.
, and
Roduner
,
E.
,
2007
, “
Electrochemical Atomic Force Microscopy Study of Proton Conductivity in a Nafion Membrane
,”
Phys. Chem. Chem. Phys.
,
9
(
21
), pp.
2735
2743
.
23.
Bunn
,
J. R.
,
Penumadu
,
D.
,
Woracek
,
R.
,
Kardjilov
,
N.
,
Hilger
,
A.
,
Manke
,
I.
, and
Williams
,
S.
,
2013
, “
Detection of Water With High Sensitivity to Study Polymer Electrolyte Fuel Cell Membranes Using Cold Neutrons at High Spatial Resolution
,”
Appl. Phys. Lett.
,
102
(
23
), p.
234102
.
24.
Owejan
,
J. P.
,
Trabold
,
T. A.
, and
Mench
,
M. M.
,
2014
, “
Oxygen Transport Resistance Correlated to Liquid Water Saturation in the Gas Diffusion Layer of PEM Fuel Cells
,”
Int. J. Heat Mass Transfer
,
71
, pp.
585
592
.
25.
Göbel
,
M.
,
Godehardt
,
M.
, and
Schladitz
,
K.
,
2017
, “
Multi-Scale Structural Analysis of Gas Diffusion Layers
,”
J. Power Sources
,
355
, pp.
8
17
.
26.
Terao
,
T.
,
Inoue
,
G.
,
Kawase
,
M.
,
Kubo
,
N.
,
Yamaguchi
,
M.
,
Yokoyama
,
K.
,
Tokunaga
,
T.
,
Shinohara
,
K.
,
Hara
,
Y.
, and
Hara
,
T.
,
2017
, “
Development of Novel Three-Dimensional Reconstruction Method for Porous Media for Polymer Electrolyte Fuel Cells Using Focused Ion Beam-Scanning Electron Microscope Tomography
,”
J. Power Sources
,
347
, pp.
108
113
.
27.
Cetinbas
,
F. C.
,
Ahluwalia
,
R. K.
,
Kariuki
,
N.
,
de Andrade
,
V.
,
Fongalland
,
D.
,
Smith
,
L.
,
Sharman
,
J.
,
Ferreira
,
P.
,
Rasouli
,
S.
, and
Myers
,
D. J.
,
2017
, “
Hybrid Approach Combining Multiple Characterization Techniques and Simulations for Microstructural Analysis of Proton Exchange Membrane Fuel Cell Electrodes
,”
J. Power Sources
,
344
, pp.
62
73
.
28.
Lange
,
K. J.
,
Sui
,
P.-C.
, and
Djilali
,
N.
,
2011
, “
Pore Scale Modeling of a Proton Exchange Membrane Fuel Cell Catalyst Layer: Effects of Water Vapor and Temperature
,”
J. Power Sources
,
196
(
6
), pp.
3195
3203
.
29.
Lange
,
K. J.
,
Sui
,
P.-C.
, and
Djilali
,
N.
,
2010
, “
Pore Scale Simulation of Transport and Electrochemical Reactions in Reconstructed PEMFC Catalyst Layers
,”
J. Electrochem. Soc.
,
157
(
10
), pp.
B1434
B1442
.
30.
Siddique
,
N. A.
, and
Liu
,
F.
,
2010
, “
Process Based Reconstruction and Simulation of a Three-Dimensional Fuel Cell Catalyst Layer
,”
Electrochim. Acta
,
55
(
19
), pp.
5357
5366
.
31.
Mukherjee
,
P. P.
, and
Wang
,
C. Y.
,
2006
, “
Stochastic Microstructure Reconstruction and Direct Numerical Simulation of the PEFC Catalyst Layer
,”
J. Electrochem. Soc.
,
153
(
5
), pp.
A840
A849
.
32.
Holdcroft
,
S.
,
2014
, “
Fuel Cell Catalyst Layers: A Polymer Science Perspective
,”
Chem. Mater.
,
26
(
1
), pp.
381
393
.
33.
Vierrath
,
S.
,
Güder
,
F.
,
Menzel
,
A.
,
Hagner
,
M.
,
Zengerle
,
R.
,
Zacharias
,
M.
, and
Thiele
,
S.
,
2015
, “
Enhancing the Quality of the Tomography of Nanoporous Materials for Better Understanding of Polymer Electrolyte Fuel Cell Materials
,”
J. Power Sources
,
285
, pp.
413
417
.
34.
Klingele
,
M.
,
Zengerle
,
R.
, and
Thiele
,
S.
,
2015
, “
Quantification of Artifacts in Scanning Electron Microscopy Tomography: Improving the Reliability of Calculated Transport Parameters in Energy Applications Such as Fuel Cell and Battery Electrodes
,”
J. Power Sources
,
275
, pp.
852
859
.
You do not currently have access to this content.