Well-dispersed and low Pt content Pt–Ru/C nanoparticles were prepared by a developed impregnating reduction method with sodium citrate as stabilizer. The as-prepared Pt–Ru/C catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. TEM showed that the Pt–Ru particles were quite uniformly distributed on the surface of the carbon with an average particle size of 3.5–4.5 nm. The effect of pH values on methanol electro-oxidation reaction was examined by cyclic voltammetry (CV) and chronoamperometry (CA). Pre-adsorbed CO monolayer stripping was used to evaluate the antipoisoning ability. The results showed that Pt–Ru/C (pH = 8) catalyst had the highest catalytic activity and stability toward the oxidation of methanol. Finally, comparing Pt–Ru/C (Pt–Ru 20 wt.%, Pt/Ru = 1:1) catalysts with Pt/C (Pt 20 wt.%), the onset potential was 200 mV lower and electrochemical active area was much bigger.

References

1.
Liu
,
H.
,
Song
,
C.
,
Zhang
,
L.
,
Zhang
,
J.
,
Wang
,
H.
, and
Wilkinson
,
D. P.
,
2006
, “
A Review of Anode Catalysis in the Direct Methanol Fuel Cell
,”
J. Power Sources
,
155
(
2
), pp.
95
110
.10.1016/j.jpowsour.2006.01.030
2.
Wasmus
,
S.
, and
Küver
,
A.
,
1999
, “
Methanol Oxidation and Direct Methanol Fuel Cells: A Selective Review
,”
J. Electroanal. Chem.
,
461
(
1
), pp.
14
31
.10.1016/S0022-0728(98)00197-1
3.
Thomas
,
S. C.
,
Ren
,
X.
,
Gottesfeld
,
S.
, and
Zelenay
,
P.
,
2002
, “
Direct Methanol Fuel Cells: Progress in Cell Performance and Cathode Research
,”
Electrochim. Acta
,
47
(
22
), pp.
3741
3748
.10.1016/S0013-4686(02)00344-4
4.
Sahin
,
O.
, and
Kivrak
,
H.
,
2013
, “
A Comparative Study of Electrochemical Methods on Pt–Ru DMFC Anode Catalysts: The Effect of Ru Addition
,”
Int. J. Hydrogen Energy
,
38
(
2
), pp.
901
909
.10.1016/j.ijhydene.2012.10.066
5.
Sirk
,
A. H.
,
Hill
,
J. M.
,
Kung
,
S. K.
, and
Birss
,
V. I.
,
2004
, “
Effect of Redox State of PtRu Electrocatalysts on Methanol Oxidation Activity
,”
J. Phys. Chem. B
,
108
(
2
), pp.
689
695
.10.1021/jp036602x
6.
Shimazaki
,
Y.
,
Kobayashi
,
Y.
,
Yamada
,
S.
,
Miwa
,
T.
, and
Konno
,
M.
,
2005
, “
Preparation and Characterization of Aqueous Colloids of Pt–Ru Nanoparticles
,”
J. Colloid Interface Sci.
,
292
(
1
), pp.
122
126
.10.1016/j.jcis.2005.05.052
7.
Bernechea
,
M.
,
García-Rodríguez
,
S.
,
Terreros
,
P.
,
de Jesúes
,
E.
,
Fierro
,
J. L.
, and
Rojas
,
S.
,
2011
, “
Synthesis of Core-Shell PtRu Dendrimer-Encapsulated Nanoparticles. Relevance as Electrocatalysts for CO Oxidation
,”
J. Phys. Chem. C
,
115
(
4
), pp.
1287
1294
.10.1021/jp106728s
8.
Salgado
,
J.
,
Paganin
,
V.
,
Gonzalez
,
E.
,
Montemor
,
M.
,
Tacchini
,
I.
,
Ansón
,
A.
,
Salvador
,
M.
,
Ferreira
,
P.
,
Figueiredo
,
F.
, and
Ferreira
,
M.
,
2013
, “
Characterization and Performance Evaluation of Pt–Ru Electrocatalysts Supported on Different Carbon Materials for Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
38
(
2
), pp.
910
920
.10.1016/j.ijhydene.2012.10.079
9.
Frelink
,
T.
,
Visscher
,
W.
, and
Van Veen
,
J.
,
1995
, “
On the Role of Ru and Sn as Promotors of Methanol Electro-oxidation Over Pt
,”
Surf. Sci.
,
335
(14), pp.
353
360
.10.1016/0039-6028(95)00412-2
10.
Chu
,
D.
, and
Jiang
,
R.
,
2002
, “
Novel Electrocatalysts for Direct Methanol Fuel Cells
,”
Solid State Ionics
,
148
(
3
), pp.
591
599
.10.1016/S0167-2738(02)00124-8
11.
Dubau
,
L.
,
Hahn
,
F.
,
Coutanceau
,
C.
,
Léger
,
J.-M.
, and
Lamy
,
C.
,
2003
, “
On the Structure Effects of Bimetallic PtRu Electrocatalysts Towards Methanol Oxidation
,”
J. Electroanal. Chem.
,
554–555
(18), pp.
407
415
.10.1016/S0022-0728(03)00308-5
12.
Guo
,
J.
,
Zhao
,
T.
,
Prabhuram
,
J.
,
Chen
,
R.
, and
Wong
,
C.
,
2005
, “
Preparation and Characterization of a PtRu/C Nanocatalyst for Direct Methanol Fuel Cells
,”
Electrochim. Acta
,
51
(
4
), pp.
754
763
.10.1016/j.electacta.2005.05.056
13.
Cheng
,
Y.
, and
Jiang
,
S. P.
,
2013
, “
Highly Effective and CO-Tolerant PtRu Electrocatalysts Supported on Poly (Ethyleneimine) Functionalized Carbon Nanotubes for Direct Methanol Fuel Cells
,”
Electrochim. Acta
,
99
(11), pp.
124
132
.10.1016/j.electacta.2013.03.081
14.
Yang
,
C.
,
Wang
,
D.
,
Hu
,
X.
,
Dai
,
C.
, and
Zhang
,
L.
,
2008
, “
Preparation and Characterization of Multiwalled Carbon Nanotube (MWCNTs)-Supported Pt–Ru Catalyst for Methanol Electrooxidation
,”
J. Alloys Compd.
,
448
(
1
), pp.
109
115
.10.1016/j.jallcom.2006.10.030
15.
Li
,
Q.
,
Mao
,
H.
,
Li
,
J.
, and
Xu
,
Q.
,
2013
, “
Effect of Nitric Acid on Modified Mesoporous Carbon as Catalyst Support of Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
10
(
5
), p.
051006
.10.1115/1.4024835
16.
Wang
,
S.
,
Kuai
,
L.
, and
Huang
,
Y.
,
2013
, “
A Highly Efficient, Clean-Surface, Porous Platinum Electrocatalyst and the Inhibition Effect of Surfactants on Catalytic Activity
,”
Chem.-A Eur. J.
,
19
(
1
), pp.
240
248
.10.1002/chem.201203398
17.
Liu
,
Z.
,
Ling
,
X.
, and
Su
,
X.
,
2004
, “
Carbon-Support Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell
,”
J. Phys. Chem. B
,
108
(
22
), pp.
8234
8240
.10.1021/jp049422b
You do not currently have access to this content.