A key consideration for portable power systems is that they must operate simultaneously at water balance (no external water supply) and thermal balance (controlled temperature). Water and thermal management are intimately linked since evaporation is a potent source of cooling. This paper presents the basic design relationships that govern water and thermal balance in polymer electrolyte membrane (PEM) fuel cell stacks and systems. Hydrogen/air and direct methanol fuel cells are both addressed and compared. Operating conditions for simultaneous water and thermal balance can be specified based on the cell’s electrochemical performance and the operating environment. These conditions can be used to specify the overall size and complexity of the cooling equipment. The water balance properties can have strong effects on the size of the thermal management equipment required.

1.
Dohle
,
H.
,
Mergel
,
J.
, and
Stolten
,
D.
, 2002, “
Heat and Power Management of a Direct-Methanol-Fuel-Cell (DMFC) System
, ”
J. Power Sources
0378-7753,
111
, pp.
268
282
.
2.
Ahmed
,
S.
,
Kopasz
,
J.
,
Kumar
,
R.
, and
Krumpelt
,
M.
, 2002, “
Water Balance in Polymer Electrolyte Fuel Cell System
, ”
J. Power Sources
0378-7753,
112
, pp.
519
530
.
3.
Kratschmar
,
K. W.
,
Pastula
,
M. E.
,
Wang
,
G. G.
,
Merida
,
W. R.
, and
Dong
,
Z.
, 2001, “
Heat Balance of An Air-Cooled Proton Exchange Membrane Fuel Cell: Theoretical Modelling and Experimental Verification
,” presented at
Building the Hydrogen Economy, 11th Canadian Hydrogen Conference
,
Victoria
, BC, Canada.
4.
Larminie
,
J.
, and
Dicks
,
A.
, 2000,
Fuel Cell Systems Explained
, 1st ed.,
John Wiley & Sons, Limited
, West Sussex, England, p.
308
.
5.
Izenson
,
M. G.
, and
Hill
,
R. W.
, 2002, “
Water Balance in PEM Fuel Cells
,” presented at 2002
ASME International Mechanical Engineering Congress and Exposition
, 17–22 Nov 2002, Paper 33168.
6.
Narayanan
,
S. R.
,
Valdez
,
T. I.
,
Rohatgi
,
N.
,
Christiansen
,
J.
,
Chun
,
W.
, and
Halpert
,
G.
, 1998, “
Electrochemical Factors in Design of Direct Methanol Fuel Cell Systems
, ”
Proceedings of the 2nd International Symposium on Proton Conducting Membrane Fuel Cells
, Electrochemical Society,
98-27
, pp.
316
326
.
7.
Picot
,
D.
,
Metkemeijer
,
R.
,
Bezian
,
J. J.
, and
Rouveyre
,
L.
, 1998, “
Impact of the Water Symmetry Factor on Humidifcation and Cooling Strategies for PEM Fuel Cell Stacks
,”
J. Power Sources
0378-7753,
75
, pp.
251
260
.
8.
Scott
,
K.
,
Taama
,
W. M.
, and
Argyropoulos
,
P.
, 1999, “
Engineering Aspects of the Direct Methanol Fuel Cell System
,”
J. Power Sources
0378-7753
79
, pp.
43
59
.
9.
Scott
,
K.
,
Argyropoulos
,
P.
, and
W. M.
Taama
, 2000, “
Modelling Transport Phenomena and Performance of Direct Methanol Fuel Cell Stacks
,”
Transactions of the Institute of Chemical Engineers
,
78
, Part A, pp.
881
888
.
10.
Giddey
,
S.
,
F. T.
Ciacchi
, and
S. P. S.
Badwal
, 2004, “
Design, Assembly, and Operation of Polymer Electrolyte Fuel Cell Stacks to 1 kWe Capacity
, ”
J. Power Sources
0378-7753,
125
, pp.
155
165
.
11.
M. J.
Moran
, and
H. N.
Shapiro
,
Fundamentals of Engineering Thermodynamics
, 3rd ed.,
John Wiley & Sons
, New York, 1996.
12.
Rohsenow
,
W. M.
, and
Choi
,
H.
, 1961,
Heat, Mass, and Momentum Transfer
,
Prentice-Hall, Inc.
, Englewood Cliffs, NJ.
You do not currently have access to this content.