Abstract

This paper presents a fast numerical algorithm for velocity optimization based on Pontryagin's minimum principle (PMP). Considering the difficulties associated with the application of the PMP when state constraints exist, a penalty function approach is proposed to convert the state-constrained problem into an unconstrained problem. Then, an iterative numerical algorithm in which the explicit solution is used to find the optimal solution is proposed. The proposed numerical algorithm is applied to velocity trajectory optimization for energy-efficient control of connected and automated vehicles (CAVs). The simulation results indicate that the algorithm can generate the optimal inputs in milliseconds and achieve a significant improvement in computational efficiency compared with traditional methods in a few seconds. A hardware-in-the-loop test for experimental validation is implemented to further verify the real-time performance of the proposed algorithm.

References

1.
Guanetti
,
J.
,
Kim
,
Y.
, and
Borrelli
,
F.
,
2018
, “
Control of Connected and Automated Vehicles: State of the Art and Future Challenges
,”
Annu. Rev. Control
,
45
, pp.
18
40
.10.1016/j.arcontrol.2018.04.011
2.
Vahidi
,
A.
, and
Sciarretta
,
A.
,
2018
, “
Energy Saving Potentials of Connected and Automated Vehicles
,”
Transport. Res. Part C Emerg. Technol.
,
95
, pp.
822
843
.10.1016/j.trc.2018.09.001
3.
Olin
,
P.
,
Aggoune
,
K.
,
Tang
,
L.
,
Confer
,
K.
,
Kirwan
,
J.
,
Deshpande
,
S. R.
,
Gupta
,
S.
,
Tulpule
,
P.
,
Canova
,
M.
, and
Rizzoni
,
G.
,
2019
, “
Reducing Fuel Consumption by Using Information From Connected and Automated Vehicle Modules to Optimize Propulsion System Control
,”
SAE
Paper No. 2019-01-1213.10.4271/2019-01-1213
4.
Ersal
,
T.
,
Kolmanovsky
,
I.
,
Masoud
,
N.
,
Ozay
,
N.
,
Scruggs
,
J.
,
Vasudevan
,
R.
, and
Orosz
,
G.
,
2020
, “
Connected and Automated Road Vehicles: State of the Art and Future Challenges
,”
Veh. Syst. Dyn.
,
58
(
5
), pp.
672
704
.10.1080/00423114.2020.1741652
5.
Bhat
,
P. K.
,
Oncken
,
J.
,
Yadav
,
R.
,
Chen
,
B.
,
Shahbakhti
,
M.
, and
Robinette
,
D.
,
2019
, “
Generation of Optimal Velocity Trajectory for Real-Time Predictive Control of a Multi-Mode Phev
,” IEEE 90th Vehicular Technology Conference (
VTC2019-Fall
),
IEEE
, Honolulu, HI, Sept. 22–25, pp.
1
5
.10.1109/VTCFall.2019.8891569
6.
Earnhardt
,
C.
,
Groelke
,
B.
,
Borek
,
J.
,
Naghnaeian
,
M.
, and
Vermillion
,
C.
,
2021
, “
A Multirate, Multiscale Economic Model Predictive Control Approach for Velocity Trajectory Optimization of a Heavy Duty Truck
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
3
), p.
031006
.10.1115/1.4048658
7.
Meng
,
X.
, and
Cassandras
,
C. G.
,
2020
, “
Trajectory Optimization of Autonomous Agents With Spatio-Temporal Constraints
,”
IEEE Trans. Control Network Syst.
,
7
(
3
), pp.
1571
1581
.10.1109/TCNS.2020.2988005
8.
Han
,
J.
,
Vahidi
,
A.
, and
Sciarretta
,
A.
,
2019
, “
Fundamentals of Energy Efficient Driving for Combustion Engine and Electric Vehicles: An Optimal Control Perspective
,”
Automatica
,
103
, pp.
558
572
.10.1016/j.automatica.2019.02.031
9.
Ozkan
,
M. F.
, and
Ma
,
Y.
,
2021
, “
Eco-Driving of Connected and Automated Vehicle With Preceding Driver Behavior Prediction
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
1
), p.
011002
.10.1115/1.4048108
10.
Bellman
,
R. E.
, and
Dreyfus
,
S. E.
,
2003
,
Dynamic Programming
,
Dover Publications
Incorporated, Mineola, NY.
11.
Francesco
,
B.
,
Enrico
,
B.
, and
Paolo
,
B.
,
2016
, “
Notes on Numerical Methods for Solving Optimal Control Problems
,”
IEEJ J. Ind. Appl.
,
5
(
2
), pp.
154
166
.10.1541/ieejjia.5.154
12.
Betts
,
J. T.
,
1998
, “
Survey of Numerical Methods for Trajectory Optimization
,”
J. Guid. Control Dyn.
,
21
(
2
), pp.
193
207
.10.2514/2.4231
13.
Benson
,
D. A.
,
Huntington
,
G. T.
,
Thorvaldsen
,
T. P.
, and
Rao
,
A. V.
,
2006
, “
Direct Trajectory Optimization and Costate Estimation Via an Orthogonal Collocation Method
,”
J. Guid. Control Dyn.
,
29
(
6
), pp.
1435
1440
.10.2514/1.20478
14.
Guo
,
L.
,
Gao
,
B.
,
Li
,
Y.
, and
Chen
,
H.
,
2017
, “
A Fast Algorithm for Nonlinear Model Predictive Control Applied to Hev Energy Management Systems
,”
Sci. China Inf. Sci.
,
60
(
9
), pp.
1
17
.10.1007/s11432-016-0269-y
15.
Dong
,
S.
,
Gao
,
B.
,
Qifang
,
L.
, and
Chen
,
H.
,
2020
, “
A Computationally Efficient Predictive Cruise Control for Automated Electric Vehicles
,” The 21st IFAC World Congress (
IFAC
), Berlin,
53
(
2
), 14173–14178.10.1016/j.ifacol.2020.12.1037
16.
Wu
,
J.
,
Zou
,
Y.
,
Zhang
,
X.
,
Du
,
G.
,
Du
,
G.
, and
Zou
,
R.
,
2020
, “
A Hierarchical Energy Management for Hybrid Electric Tracked Vehicle Considering Velocity Planning With Pseudospectral Method
,”
IEEE Trans. Transport. Elect.
,
6
(
2
), pp.
703
716
.10.1109/TTE.2020.2973577
17.
Bock
,
H. G.
, and
Plitt
,
K. J. A.
,
1984
, “
A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems
,”
IFAC Proc. Vols.
,
17
(
2
), pp.
1603
1608
.10.1016/S1474-6670(17)61205-9
18.
Tamimi
,
J.
, and
Li
,
P.
,
2010
, “
A Combined Approach to Nonlinear Model Predictive Control of Fast Systems
,”
J. Process Control
,
20
(
9
), pp.
1092
1102
.10.1016/j.jprocont.2010.06.002
19.
Gerdts
,
M.
,
2008
, “
A Nonsmooth Newton's Method for Control-State Constrained Optimal Control Problems
,”
Math. Comput. Simul.
,
79
(
4
), pp.
925
936
.10.1016/j.matcom.2008.02.018
20.
Ohtsuka
,
T.
,
2004
, “
A Continuation/GMRES Method for Fast Computation of Nonlinear Receding Horizon Control
,”
Automatica
,
40
(
4
), pp.
563
574
.10.1016/j.automatica.2003.11.005
21.
Chen
,
H.
,
Guo
,
L.
,
Ding
,
H.
,
Li
,
Y.
, and
Gao
,
B.
,
2019
, “
Real-Time Predictive Cruise Control for Eco-Driving Taking Into Account Traffic Constraints
,”
IEEE Trans. Intell. Transport. Syst.
,
20
(
8
), pp.
2858
2868
.10.1109/TIT S.2018.2868518
22.
Han
,
J.
,
Sciarretta
,
A.
, and
Petit
,
N.
,
2017
, “
Handling State Constraints in Fast-Computing Optimal Control for Hybrid Powertrains
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
4781
4786
.10.1016/j.ifacol.2017.08.961
23.
Hoogendoorn
,
S. P.
,
Hoogendoorn
,
R. G.
,
Wang
,
M.
, and
Daamen
,
W.
,
2012
, “
Modeling Driver, Driver Support, and Cooperative Systems With Dynamic Optimal Control
,”
Transport. Res. Rec.
,
2316
(
1
), pp.
20
30
.10.3141/2316-03
24.
Jiang
,
H.
,
Hu
,
J.
,
An
,
S.
,
Wang
,
M.
, and
Park
,
B. B.
,
2017
, “
Eco Approaching at an Isolated Signalized Intersection Under Partially Connected and Automated Vehicles Environment
,”
Transport. Res. Part C Emerg. Technol.
,
79
, pp.
290
307
.10.1016/j.trc.2017.04.001
25.
van Keulen
,
T.
,
Gillot
,
J.
,
de Jager
,
B.
, and
Steinbuch
,
M.
,
2014
, “
Solution for State Constrained Optimal Control Problems Applied to Power Split Control for Hybrid Vehicles
,”
Automatica
,
50
(
1
), pp.
187
192
.10.1016/j.automatica.2013.09.039
26.
Guo
,
L.
,
Chen
,
H.
,
Liu
,
Q.
, and
Gao
,
B.
,
2018
, “
A Computationally Efficient and Hierarchical Control Strategy for Velocity Optimization of on-Road Vehicles
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
49
(
1
), pp.
1
41
.10.1109/TSMC.2018.2826005
You do not currently have access to this content.