Abstract

Due to the flexibility and high degrees-of-freedom of flexible cables, their dynamic modeling and precise control are challenging. In this paper, the dynamic modeling and control of flexible cables with human-like dual manipulators are studied to deploy them on a plane and form the desired shapes automatically. First, we establish a dynamic model of flexible cables based on a discrete elastic rod model. This model can simulate their stretching, bending, and twisting deformations. Then, we consider the collisions, contacts, and frictions between the flexible cables and the plane, add kinematic constraints to the model, and finally obtain an implementable dynamic solution of the model. Next, we propose dynamic control schemes including parallel dual-arm control and coordinated dual-arm control to deploy the flexible cables on a plane and form the desired shapes for dual-arm controls. Finally, experimental and simulation studies are carried out to illustrate the effectiveness of the dynamic model and the validity of the control schemes. The results show that the model can successfully demonstrate the deformations of flexible cables, and the proposed control schemes can successfully manipulate flexible cables in different tasks.

References

1.
Roussel
,
O.
,
Taïx
,
M.
, and
Bretl
,
T.
,
2014
, “
Motion Planning for a Deformable Linear Object
,”
European Workshop on Deformable Object Manipulation
, Lyon, France, Mar. 25, pp.
153
158
.
2.
Provot
,
X.
,
1995
, “
Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior
,”
Proceedings of the Graphics Interface Conference
,
Quebec, QC, Canada
, May 17–19, pp.
147
154
.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.1732&rep=rep1&type=pdf
3.
Loock
,
A.
,
Schömer
,
E.
, and
Stadtwald
,
I.
,
2001
, “
A Virtual Environment for Interactive Assembly Simulation: From Rigid Bodies to Deformable Cables
,”
Fifth World Multiconference on Systemics, Cybernetics and Informatics (SCI)
, Orlando, FL, July 22–25, pp.
325
332
.
4.
Lv
,
N.
,
Liu
,
J.
,
Ding
,
X.
,
Liu
,
J.
,
Lin
,
H.
, and
Ma
,
J.
,
2017
, “
Physically Based Real-Time Interactive Assembly Simulation of Cable Harness
,”
J. Manuf. Syst.
,
43
, pp.
385
399
.10.1016/j.jmsy.2017.02.001
5.
Hergenröther
,
E.
, and
Dähne
,
P.
,
2000
, “
Real-Time Virtual Cables Based on Kinematic Simulation
,”
Proceedings of WSCG
,
Plzen, Czech Republic
, Feb. 7–10, pp.
402
409
.http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A838598A3C6826E3DFDB57F0EF134EBD?doi=10.1.1.142.334&rep=rep1&type=pdf
6.
Servin
,
M.
, and
Lacoursiere
,
C.
,
2008
, “
Rigid Body Cable for Virtual Environments
,”
IEEE Trans. Visualization Comput. Graphics
,
14
(
4
), pp.
783
796
.10.1109/TVCG.2007.70629
7.
Hadap
,
S.
, and
Magnenat-Thalmann
,
N.
,
2001
, “
Modeling Dynamic Hair as a Continuum
,”
Comput. Graphics Forum
,
20
(
3
), pp.
329
338
.10.1111/1467-8659.00525
8.
Redon
,
S.
,
Galoppo
,
N.
, and
Lin
,
M. C.
,
2005
, “
Adaptive Dynamics of Articulated Bodies
,”
ACM Trans. Graphics
,
24
(
3
), pp.
936
945
.10.1145/1073204.1073294
9.
Choe
,
B.
,
Choi
,
M. G.
, and
Ko
,
H.-S.
,
2005
, “
Simulating Complex Hair With Robust Collision Handling
,”
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
,
Los Angeles, CA
, July 29–31, pp.
153
160
. http://graphics.snu.ac.kr/publications/conference_proceedings/2005%20Choe%20SCA.pdf
10.
Terzopoulos
,
D.
, and
Qin
,
H.
,
1994
, “
Dynamic NURBS With Geometric Constraints for Interactive Sculpting
,”
ACM Trans. Graphics
,
13
(
2
), pp.
103
136
.10.1145/176579.176580
11.
Nocent
,
O.
, and
Remion
,
Y.
,
2001
, “
Continuous Deformation Energy for Dynamic Material Splines Subject to Finite Displacements
,”
Eurographic Workshop on Computer Animation and Simulation
, Manchester, UK, Sept. 2–3, pp.
88
97
.
12.
Lenoir
,
J.
,
Cotin
,
S.
,
Duriez
,
C.
, and
Neumann
,
P.
,
2006
, “
Interactive Physically-Based Simulation of Catheter and Guidewire
,”
Comput. Graphics
,
30
(
3
), pp.
416
422
.10.1016/j.cag.2006.02.013
13.
Theetten
,
A.
,
Grisoni
,
L.
,
Andriot
,
C.
, and
Barsky
,
B.
,
2008
, “
Geometrically Exact Dynamic Splines
,”
Comput. Aided Des.
,
40
(
1
), pp.
35
48
.10.1016/j.cad.2007.05.008
14.
Echegoyen
,
Z.
,
Villaverde
,
I.
,
Moreno
,
R.
,
Graña
,
M.
, and
D'Anjou
,
A.
,
2010
, “
Linked Multi-Component Mobile Robots: Modeling, Simulation and Control
,”
Rob. Auton. Syst.
,
58
(
12
), pp.
1292
1305
.10.1016/j.robot.2010.08.008
15.
Valentini
,
P. P.
, and
Pennestrì
,
E.
,
2011
, “
Modeling Elastic Beams Using Dynamic Splines
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
271
284
.10.1007/s11044-010-9232-9
16.
Driscoll
,
F.
,
Lueck
,
R.
, and
Nahon
,
M.
,
2000
, “
Development and Validation of a Lumped-Mass Dynamics Model of a Deep-Sea ROV System
,”
Appl. Ocean Res.
,
22
(
3
), pp.
169
182
.10.1016/S0141-1187(00)00002-X
17.
Kaufmann
,
P.
,
Martin
,
S.
,
Botsch
,
M.
, and
Gross
,
M.
,
2009
, “
Flexible Simulation of Deformable Models Using Discontinuous Galerkin FEM
,”
Graphical Models
,
71
(
4
), pp.
153
167
.10.1016/j.gmod.2009.02.002
18.
Wang
,
Q.
,
Fang
,
H.
,
Li
,
N.
,
Weggel
,
D. C.
, and
Wen
,
G.
,
2013
, “
An Efficient FE Model of Slender Members for Crash Analysis of Cable Barriers
,”
Eng. Struct.
,
52
(
9
), pp.
240
256
.10.1016/j.engstruct.2013.02.027
19.
Buckham
,
B.
,
Driscoll
,
F. R.
, and
Nahon
,
M.
,
2004
, “
Development of a Finite Element Cable Model for Use in Low-Tension Dynamics Simulation
,”
ASME J. Appl. Mech.
,
71
(
4
), pp.
476
485
.10.1115/1.1755691
20.
Pai
,
D. K.
,
2002
, “
STRANDS: Interactive Simulation of Thin Solids Using Cosserat Models
,”
Comput. Graphics Forum
,
21
(
3
), pp.
347
352
.10.1111/1467-8659.00594
21.
Bertails
,
F.
,
Audoly
,
B.
,
Cani
,
M. P.
,
Querleux
,
B.
,
Leroy
,
F.
, and
Lévêque
,
J. L.
,
2006
, “
Super-Helices for Predicting the Dynamics of Natural Hair
,”
ACM Trans. Graphics
,
25
(
3
), pp.
1180
1187
.10.1145/1141911.1142012
22.
Grégoire
,
M.
, and
Schömer
,
E.
,
2007
, “
Interactive Simulation of One-Dimensional Flexible Parts
,”
Comput. Aided Des.
,
39
(
8
), pp.
694
707
.10.1016/j.cad.2007.05.005
23.
Spillmann
,
J.
, and
Teschner
,
M.
,
2007
, “
CORDE: Cosserat Rod Elements for the Dynamic Simulation of One-Dimensional Elastic Objects
,”
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
,
San Diego, CA
, Aug. 3–4, pp.
63
72
.
24.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graphics
,
27
(
3
), p.
63
.10.1145/1360612.1360662
25.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graphics
,
29
(
4
), pp.
1
10
.10.1145/1778765.1778853
26.
Lv
,
N.
,
Liu
,
J.
,
Ding
,
X.
, and
Lin
,
H.
,
2017
, “
Assembly Simulation of Multi-Branch Cables
,”
J. Manuf. Syst.
,
45
, pp.
201
211
.10.1016/j.jmsy.2017.09.007
27.
Jawed
,
M. K.
,
Novelia
,
A.
, and
O'Reilly
,
O. M.
,
2018
,
A Primer on the Kinematics of Discrete Elastic Rods
,
Springer
, Cham, Switzerland.
28.
Grazioso
,
S.
,
Gironimo
,
G. D.
, and
Siciliano
,
B.
,
2019
, “
A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation
,”
Soft Robot
,
6
(
6
), pp.
790
811
.10.1089/soro.2018.0047
29.
Grazioso
,
S.
,
Gironimo
,
G. D.
, and
Siciliano
,
B.
,
2018
, “
From Differential Geometry of Curves to Helical Kinematics of Continuum Robots Using Exponential Mapping
,”
International Symposium on Advances in Robot Kinematics
, Bologna, Italy, July 1–5, pp.
319
326
.https://www.researchgate.net/publication/325950738_From_Differential_Geometry_of_Curves_to_Helical_Kinematics_of_Continuum_Robots_Using_Exponential_Mapping
30.
Godbole
,
H.
,
Caverly
,
R.
, and
Forbes
,
J.
,
2019
, “
Dynamic Modelling and Adaptive Control of a Single Degree-of-Freedom Flexible Cable-Driven Parallel Robot
,”
ASME J. Dyn. Syst. Meas. Control
, 141(10), p.
101002
.10.1115/1.4043427
31.
Lamiraux
,
F.
, and
Kavraki
,
L. E.
,
2001
, “
Planning Paths for Elastic Objects Under Manipulation Constraints
,”
Int. J. Robot. Res
,
20
(
3
), pp.
188
208
.10.1177/02783640122067354
32.
Asano
,
Y.
,
Wakamatsu
,
H.
,
Morinaga
,
E.
,
Arai
,
E.
, and
Hirai
,
S.
,
2010
, “
Deformation Path Planning for Manipulation of Flexible Circuit Boards
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
, China, Oct. 18–22, pp.
5386
5391
.
33.
Moll
,
M.
, and
Kavraki
,
L. E.
,
2005
, “
Path Planning for Variable Resolution Minimal-Energy Curves of Constant Length
,”
IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, Apr. 18–22, pp.
2130
2135
.10.1109/ROBOT.2005.1570428
34.
Moll
,
M.
, and
Kavraki
,
L. E.
,
2006
, “
Path Planning for Deformable Linear Objects
,”
IEEE Trans. Robot
,
22
(
4
), pp.
625
636
.10.1109/TRO.2006.878933
35.
Hermansson
,
T.
,
Bohlin
,
R.
,
Carlson
,
J. S.
, and
Soderberg
,
R.
,
2013
, “
Automatic Assembly Path Planning for Wiring Harness Installations
,”
J. Manuf. Syst.
,
32
(
3
), pp.
417
422
.10.1016/j.jmsy.2013.04.006
36.
Gayle
,
R.
,
Lin
,
M. C.
, and
Manocha
,
D.
,
2005
, “
Constraint-Based Motion Planning of Deformable Robots
,”
IEEE International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
1046
1053
.10.1109/ROBOT.2005.1570254
37.
Gayle
,
R.
,
Redon
,
S.
,
Sud
,
A.
,
Lin
,
M. C.
, and
Manocha
,
D.
,
2007
, “
Efficient Motion Planning of Highly Articulated Chains Using Physics-Based Sampling
,”
IEEE International Conference on Robotics and Automation
,
Rome, Italy
, Apr. 10–14, pp.
3319
3326
.10.1109/ROBOT.2007.363985
38.
Roussel
,
O.
,
Taïx
,
M.
, and
Bretl
,
T.
,
2014
, “
Efficient Motion Planning for Quasi-Static Elastic Rods Using Geometry Neighborhood Approximation
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Besancon, France
, July 8–11, pp.
1024
1029
.10.1109/AIM.2014.6878215
39.
Mahoney
,
A.
,
Bross
,
J.
, and
Johnson
,
D.
,
2010
, “
Deformable Robot Motion Planning in a Reduced-Dimension Configuration Space
,”
IEEE International Conference on Robotics and Automation
, Anchorage, AK, May 3–7, pp.
5133
5138
.10.1109/ROBOT.2010.5509649
40.
Bretl
,
T.
, and
McCarthy
,
Z.
,
2014
, “
Quasi-Static Manipulation of a Kirchhoff Elastic Rod Based on a Geometric Analysis of Equilibrium Configurations
,”
Int. J. Robot. Res
,
33
(
1
), pp.
48
68
.10.1177/0278364912473169
41.
Roussel
,
O.
,
Borum
,
A.
,
Taix
,
M.
, and
Bretl
.,
T.
,
2015
, “
Manipulation Planning With Contacts for an Extensible Elastic Rod by Sampling on the Submanifold of Static Equilibrium Configurations
,”
IEEE International Conference on Robotics and Automation
, Seattle, WA, May 26–30, pp.
3116
3121
. 10.1109/ICRA.2015.7139627
42.
Mukadam
,
M.
,
Borum
,
A.
, and
Bretl
,
T.
,
2014
, “
Quasi-Static Manipulation of a Planar Elastic Rod Using Multiple Robotic Grippers
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
Chicago, IL, Sept. 14–18, pp.
55
60
. 10.1109/IROS.2014.6942540
43.
Mikchevitch
,
A.
,
Léon
,
J.-C.
, and
Gouskov
,
A.
,
2004
, “
Flexible Beam Part Manipulation for Assembly Operation Simulation in a Virtual Reality Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
2
), pp.
114
123
.10.1115/1.1736687
44.
Matthews
,
D.
, and
Bretl
,
T.
,
2012
, “
Experiments in Quasi-Static Manipulation of a Planar Elastic Rod
,”
25th IEEE/RSJ International Conference on Robotics and Intelligent Systems
,
Vilamoura-Algarve, Portugal
, Oct. 7–12, pp.
5420
5427
. 10.1109/IROS.2012.6385876
45.
Borum
,
A.
, and
Bretl
,
T.
,
2015
, “
The Free Configuration Space of a Kirchhoff Elastic Rod is Path-Connected
,”
IEEE International Conference on Robotics and Automation,
Seattle, WA, May 26–30, pp.
2958
2964
.10.1109/ICRA.2015.7139604
46.
Tuan
,
L. A.
,
Joo
,
Y. H.
,
Duong
,
P. X.
, and
Tien
,
L. Q.
,
2017
, “
Parameter Estimator Integrated-Sliding Mode Control of Dual Arm Robots
,”
Int. J. Control Autom. Syst.
,
15
(
6
), pp.
2754
2763
.10.1007/s12555-017-0018-1
47.
Tuan
,
L. A.
,
Joo
,
Y. H.
,
Tien
,
L. Q.
, and
Duong
,
P. X.
,
2017
, “
Adaptive Neural Network Second-Order Sliding Mode Control of Dual Arm Robots
,”
Int. J. Control Autom. Syst.
,
15
(
6
), pp.
1
9
.10.1007/s12555-017-0026-1
48.
Lv
,
N.
,
Liu
,
J.
,
Xia
,
H.
, and
Jia
,
Y.
,
2019
, “
Dynamic Modeling and Control of Flexible Cables for Shape Forming
,”
ASME
Paper No. DSCC2019-9049
. 10.1115/DSCC2019-9049
49.
Audoly
,
B.
,
Clauvelin
,
N.
,
Brun
,
P. T.
,
Bergou
,
M.
,
Grinspun
,
E.
, and
Wardetzky
,
M.
,
2013
, “
A Discrete Geometric Approach for Simulating the Dynamics of Thin Viscous Threads
,”
J. Comput. Phys.
,
253
(
C
), pp.
18
49
.10.1016/j.jcp.2013.06.034
50.
ABB, “YuMi® - IRB 14000 | Collaborative Robot,” accessed Mar. 22, 2021, https://new.abb.com/products/robotics/industrial-robots/irb-14000-yumi
51.
JiaXi
,
Y.
,
Cheng
,
N. Y.
, and
Liang
,
S.
,
2014
, “
Coordinated Motion Control of a Nonholonomic Mobile Manipulator for Accurate Motion Tracking
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Chicago, IL, Sept. 14–18, pp.
1635
1640
.10.1109/IROS.2014.6942774
You do not currently have access to this content.