Abstract

This paper is dedicated to the robust nonlinear control of friction-induced vibrations (FIV), more particularly those generated according to the mode-coupling mechanism. A nonlinear scheme which consists of a sliding-mode controller implemented by using a high-gain state observer is proposed. The main objective is to suppress or mitigate the generated vibrations by taking into account of the nonlinearities and uncertainties inherent to friction systems. Hence, this study proposes the analysis of the closed-loop performances of the high-gain observer-based sliding-mode controller when used for the active control of vibrations issued from the mode-coupling mechanism. Based on numerical simulations, the proposed controller has shown suitable performances distinguished from an effective suppress of the generated vibrations. Otherwise, it is shown that the gain of the used nonlinear state observer must be tuned in order to ensure a suitable compromise between the robustness level of the performances with respect to parameter uncertainty and the robustness level with respect to the measurement noise.

References

1.
Armstrong-Helouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
,
1994
, “
A Survey of Models, Analysis Tools, and Compensation Methods for the Control of Machines With Friction
,”
Automatica
,
30
, pp.
1083
1138
.10.1016/0005-1098(94)90209-7
2.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
,
1998
, “
On the Modeling of Friction Oscillators
,”
J. Sound Vib.
,
216
(
3
), pp.
435
459
.10.1006/jsvi.1998.1736
3.
Thomsen
,
J.
,
1999
, “
Using Fast Vibrations to Quench Friction-Induced Oscillations
,”
J. Sound Vib.
,
228
(
5
), pp.
1079
1102
.10.1006/jsvi.1999.2460
4.
Li
,
Y.
, and
Feng
,
Z. C.
,
2004
, “
Bifurcation and Chaos in Friction-Induced Vibration
,”
Commun. Nonlinear Sci. Numer. Simul.
,
9
(
6
), pp.
633
647
.10.1016/S1007-5704(03)00058-3
5.
Ibrahim
,
R.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos Part 1: Mechanics of Contact and Friction
,”
Am. Soc. Mech. Eng. Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
.10.1115/1.3111079
6.
Ibrahim
,
R.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos Part 2: Dynamics and Modeling
,”
Am. Soc. Mech. Eng. Appl. Mech. Rev.
,
47
(
7
), pp.
227
263
.10.1115/1.3111080
7.
Kinkaid
,
N. M.
,
O'Reilly
,
O. M.
, and
Papadopoulos
,
P.
,
2003
, “
Automative Disc Brake Squeal
,”
J. Sound Vib.
,
267
(
1
), pp.
105
166
.10.1016/S0022-460X(02)01573-0
8.
AbuBakar
,
A. R.
, and
Ouyang
,
H.
,
2006
, “
Complex Eigenvalue Analysis and Dynamic Transient Analysis in Predicting Disc Brake Squeal
,”
Int. J. Veh. Noise Vib.
,
2
(
2
), pp.
143
155
.10.1504/IJVNV.2006.011051
9.
Hoffmann
,
N.
, and
Gaul
,
L.
,
2003
, “
Effects of Damping on Mode-Coupling Instability in Friction Induced Oscillations
,”
ZAMM—J. Appl. Math. Mech.
,
83
(
8
), pp.
524
534
.10.1002/zamm.200310022
10.
Hetzler
,
H.
,
Schwarzer
,
D.
, and
Seemann
,
W.
,
2007
, “
Analytical Investigation of Steady-State Stability and Hopf-Bifurcations Occuring in Sliding Friction Oscillators With Application to Low-Frequency Disc Brake Noise
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
1
), pp.
83
99
.10.1016/j.cnsns.2006.01.007
11.
Coudeyras
,
N.
,
Nacivet
,
S.
, and
Sinou
,
J.-J.
,
2009
, “
Periodic and Quasi-Periodic Solutions for Multi-Instabilities Involved in Brake Squeal
,”
J. Sound Vib.
,
328
(
4–5
), pp.
520
540
.10.1016/j.jsv.2009.08.017
12.
Pilipchuk
,
V.
,
Olejnik
,
P.
, and
Awrejcewicz
,
J.
,
2015
, “
Transient Friction-Induced Vibration in a 2-Dof Model of Brakes
,”
J. Sound Vib.
,
344
, pp.
297
312
.10.1016/j.jsv.2015.01.028
13.
Butlin
,
T.
, and
Woodhouse
,
J.
,
2009
, “
Sensitivity of Friction-Induced Vibration in Idealised Systems
,”
J. Sound Vib.
,
319
(
1–2
), pp.
182
198
.10.1016/j.jsv.2008.05.034
14.
Butlin
,
T.
, and
Woodhouse
,
J.
,
2010
, “
Friction-Induced Vibration: Quantifying Sensitivity and Uncertainty
,”
J. Sound Vib.
,
329
(
5
), pp.
509
526
.10.1016/j.jsv.2009.09.026
15.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2011
, “
Statistical Analysis of Brake Squeal Noise
,”
J. Sound Vib.
,
330
(
12
), pp.
2978
2994
.10.1016/j.jsv.2010.12.021
16.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
,
E.
,
2012
, “
Wiener Haar Expansion for the Modeling and Prediction of the Dynamic Behavior of Self-Excited Nonlinear Uncertain Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
5
), p.
051011
.10.1115/1.4006371
17.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
,
E.
,
2014
, “
Wiener Askey and Wiener Haar Expansions for the Analysis and Prediction of Limit Cycle Oscillations in Uncertain Nonlinear Dynamic Friction Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021007
.10.1115/1.4024851
18.
Nobari
,
A.
,
Ouyang
,
H.
, and
Bannister
,
P.
,
2015
, “
Statistics of Complex Eigenvalues in Friction-Induced Vibration
,”
J. Sound Vib.
,
338
, pp.
169
183
.10.1016/j.jsv.2014.10.017
19.
Kieu
,
D. T.
,
Bergeot
,
B.
,
Gobert
,
M. L.
, and
Berger
,
S.
,
2019
, “
Stability Analysis of a Clutch System With Uncertain Parameters Using Sparse Polynomial Chaos Expansions
,”
Mech. Ind.
,
20
(
1
), p.
17
.10.1051/meca/2019003
20.
Snoun
,
C.
,
Bergeot
,
B.
, and
Berger
,
S.
,
2019
, “
Prediction of the Dynamic Behaviour of Uncertain Friction System Coupled to Nonlinear Energy Sinks Using a Multi-Element Generalized Polynomial Chaos Approach
,”
Eur. J. Mech.
,
80
, p.
103917
.10.1016/j.euromechsol.2019.103917
21.
Denimal
,
E.
,
Nechak
,
L.
,
Sinou
,
J.-J.
, and
Nacivet
,
S.
,
2016
, “
Kriging Surrogate Models for Predicting the Complex Eigenvalues of Mechanical Systems Subjected to Friction-Induced Vibration
,”
Shock Vib.
,
2016
, pp.
1
22
.10.1155/2016/3586230
22.
Nobari
,
A.
,
Ouyang
,
H.
, and
Bannister
,
P.
,
2015
, “
Uncertainty Quantification of Squeal Instability Via Surrogate Modelling
,”
Mech. Syst. Signal Process.
,
60–61
, pp.
887
908
.10.1016/j.ymssp.2015.01.022
23.
Massa
,
F.
,
Quan Do
,
H.
,
Tison
,
T.
, and
Cazier
,
O.
,
2015
, “
Uncertain Friction-Induced Vibration Study: Coupling of Fuzzy Logic, Fuzzy Sets and Interval Theories
,”
ASME J. Risk Uncertain. Eng. Syst. B
,
2
(1), p.
011008
.10.1115/1.4030469
24.
Nechak
,
L.
, and
Sinou
,
J.-J.
,
2017
, “
Hybrid Surrogate Model for the Prediction of Uncertain Friction-Induced Instabilities
,”
J. Sound Vib.
,
396
, pp.
122
143
.10.1016/j.jsv.2017.01.040
25.
Denimal
,
E.
,
Nechak
,
L.
,
Sinou
,
J.-J.
, and
Nacivet
,
S.
,
2018
, “
A Novel Hybrid Surrogate Model and Its Application on a Mechanical System Subjected to Friction-Induced Vibration
,”
J. Sound Vib.
,
434
, pp.
456
474
.10.1016/j.jsv.2017.08.005
26.
Popp
,
K.
, and
Rudolph
,
M.
,
2004
, “
Vibration Control to Avoid Stick-Slip Motion
,”
J. Vib. Control
,
10
(
11
), pp.
1585
1600
.10.1177/1077546304042026
27.
Bergeot
,
B.
,
Berger
,
S.
, and
Bellizzi
,
S.
,
2018
, “
Mode Coupling Instability Mitigation in Friction Systems by Means of Nonlinear Energy Sinks: Numerical Highlighting and Local Stability Analysis
,”
J. Vib. Control
,
24
(
15
), pp.
3487
3511
.10.1177/1077546317707101
28.
Ouyang
,
H.
,
2009
, “
Prediction and Assignment of Latent Roots of Damped Asymmetric Systems by Structural Modifications
,”
Mech. Syst. Signal Process.
,
23
(
6
), pp.
1920
1930
.10.1016/j.ymssp.2008.08.001
29.
Nakano
,
K.
, and
Maegawa
,
S.
,
2009
, “
Safety-Design Criteria of Sliding Systems for Preventing Friction-Induced Vibration
,”
J. Sound Vib.
,
324
(
3–5
), pp.
539
555
.10.1016/j.jsv.2009.02.027
30.
Armstrong
,
B.
, and
Amin
,
B.
,
1996
, “
PID Control in the Presence of Static Friction: A Comparison of Algebraic and Describing Function Analysis
,”
Automatica
,
32
(
5
), pp.
679
692
.10.1016/0005-1098(95)00199-9
31.
Hensen
,
R. H. A.
,
Van De Molengraft
,
M. J. G.
, and
Steinbuch
,
M.
,
2002
, “
Friction-Induced Hunting Limit Cycles: An Event Mapping Approach
,”
Proceeding of the American Control Conference
, Anchorage, AK, May 8–10, pp.
2267
2272
.http://www.mate.tue.nl/mate/pdfs/2026.pdf
32.
Hashemi-Dehkordi
,
S. M.
,
Mailah
,
M.
, and
Abu-Bakar
,
A. R.
,
2010
, “
Suppressing Friction-Induced Vibration Due to Negative Damping and Mode Coupling Effects Using Active Force Control
,”
Australian J. Basic Appl. Sci.
,
4
(
8
), pp.
3917
3933
.https://www.researchgate.net/publication/288995379_Suppressing_friction-induced_vibration_due_to_negative_damping_and_mode_coupling_effects_using_active_force_control
33.
Singh
,
K. V.
, and
Ouyang
,
H.
,
2013
, “
Pole Assignment Using State Feedback With Time Delay in Friction-Induced Vibration Problems
,”
Acta Mech.
,
224
(
3
), pp.
645
656
.10.1007/s00707-012-0778-x
34.
Saha
,
A.
,
Bhattacharya
,
B.
, and
Wahi
,
P.
,
2010
, “
A Comparative Study on the Control of Friction-Driven Oscillations by Time- Delayed Feedback
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
15
37
.10.1007/s11071-009-9577-x
35.
Das
,
J.
, and
Mallik
,
A. K.
,
2006
, “
Control of Friction Driven Oscillation by Time-Delayed State Feedback
,”
J. Sound Vib.
,
297
(
3–5
), pp.
578
594
.10.1016/j.jsv.2006.04.013
36.
Chatterjee
,
S.
,
2007
, “
Time-Delayed Feedback Control of Friction-Induced Instability
,”
Int. J. Nonlinear Mech.
,
42
(
9
), pp.
1127
1127
.10.1016/j.ijnonlinmec.2007.08.002
37.
Tehrani
,
M. G.
, and
Ouyang
,
H.
,
2012
, “
Receptance-Based Partial Pole Assignment for Asymmetric Systems Using State-Feedback
,”
Shock Vib.
,
19
(
5
), pp.
1135
1142
.10.1155/2012/564061
38.
Nechak
,
L.
,
2019
, “
Nonlinear Control of Friction-Induced Limit Cycle Oscillations Via Feedback Linearization
,”
Mech. Syst. Signal Process.
,
126
, pp.
264
280
.10.1016/j.ymssp.2019.02.018
39.
Zhen
,
C.
,
Jiffri
,
S.
,
Li
,
D.
,
Xiang
,
J.
, and
Mottershead
,
J. E.
,
2018
, “
Feedback Linearisation of Nonlinear Vibration Problems: A New Formulation by the Method of Receptances
,”
Mech. Syst. Signal Process.
,
98
, pp.
1056
1068
.10.1016/j.ymssp.2017.05.048
40.
Southward
,
S. C.
,
Radcliffe
,
C. J.
, and
MacCluer
,
C. R.
,
1991
, “
Robust Nonlinear Stick-Slip Friction Compensation
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
4
), pp.
639
644
.10.1115/1.2896469
41.
Liang
,
Y.
,
Yamaura
,
H.
, and
Ouyang
,
H.
,
2017
, “
Active Assignment of Eigenvalues and Eigen-Sensitivities for Robust Stabilization of Friction-Induced Vibration
,”
Mech. Syst. Signal Process.
,
90
, pp.
254
267
.10.1016/j.ymssp.2016.12.011
42.
Friedland
,
B.
, and
Mentzelopoulou
,
S.
,
1992
, “
On Adaptive Friction Compensation Without Velocity Measurement
,”
Proceeding of the First IEEE Conference on Control Applications
, Dayton, OH, Sept. 13–16, pp.
1076
1081
.10.1109/CCA.1992.269721
43.
Mallon
,
N.
,
Van de Wouw
,
N.
,
Putra
,
D.
, and
Nijmeijer
,
H.
,
2006
, “
Friction Compensation in a Controlled One-Link Robot Using Reduced Order Observer
,”
IEEE Trans. Control Syst. Technol.
,
14
(
2
), pp.
374
383
.10.1109/TCST.2005.863674
44.
Ferretti
,
G.
,
Magnani
,
G.
, and
Rocco
,
P.
,
2001
, “
Alternatives in Precise Load Motion Control of Two-Mass Servomechanisms
,”
Proceeding of the 2001 IEEE/ASME Conference on Advanced Intelligent Mechatronics
, Como, Italy, July 8–12, pp.
893
898
.10.1109/AIM.2001.936784
45.
Basturk
,
H.
,
2017
, “
Observer-Based Boundary Control Design for Suppression of Stick-Slip Oscillations in Drilling Systems With Only Surface Measurements
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
10
), p.
104501
.10.1115/1.4036549
46.
Wang
,
Y. F.
,
Wang
,
D. H.
, and
Chai
,
T. Y.
,
2013
, “
State Estimate-Based Robust Adaptive Control of a Linked Mass-Spring System With Nonlinear Friction
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
2
), p. 021004.10.1115/1.40072
47.
Nechak
,
L.
,
2020
, “
Nonlinear State Observer for Estimating and Controlling of Friction-Induced Vibrations
,”
Mech. Syst. Signal Process.
,
139
, pp.
106588
3933
.10.1016/j.ymssp.2019.106588
48.
Khalil
,
H.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
49.
Slotine
,
J.-J.
, and
Weiping
,
L.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
50.
Dabroom
,
A. M.
, and
Khalil
,
H.
,
2001
, “
Output Feedback Sampled Data Control of Nonlinear Systems Using High-Gain Observers
,”
IEEE Trans. Autom. Control
,
46
(
11
), pp.
1712
1725
.10.1109/9.964682
51.
Seungrohk
,
O.
, and
Khalil
,
H.
,
1995
, “
Output Feedback Stabilization Using Variable Structure Control
,”
Int. J. Control
,
62
(
4
), pp.
831
848
.10.1080/00207179508921571
52.
Bag
,
S. K.
,
Spurgeon
,
S. K.
, and
Edwards
,
C.
,
1996
, “
Dynamic Output Feedback Sliding Mode Design for Linear Uncertain Systems
,”
Proceedings of the 35th Conference on Decision and Control
, Kobe, Japan, pp.
4613
4618
.10.1109/CDC.1996.577600
53.
Wang
,
Y.
,
Liu
,
L.
,
Wang
,
D.
,
Ju
,
F.
, and
Chen
,
B.
,
2020
, “
Time-Delay Control Using a Nonlinear Adaptive Law for Accurate Trajectory Tracking of Cable-Driven Robots
,”
IEEE Trans. Ind. Inf.
,
16
(
8
), pp.
5234
5243
.10.1109/TII.2019.2951741
54.
Wang
,
Y.
,
Zhu
,
K.
,
Chen
,
B.
, and
Jin
,
M.
,
2020
, “
Model-Free Continuous Nonsingular Fast Terminal Sliding-Mode Control for Cable-Driven Manipulators
,”
ISA Trans.
,
98
, pp.
483
495
.10.1016/j.isatra.2019.08.046
55.
Wang
,
Y.
,
Li
,
S.
,
Wang
,
D.
,
Ju
,
F.
,
Chen
,
B.
, and
Wu
,
H.
,
2020
, “
Adaptive Time-Delay Control for Cable-Driven Manipulators With Enhanced Nonsingular Fast Terminal Sliding Mode
,”
IEEE Trans. Ind. Inf.
, epub.10.1109/TIE.2020.2975473
56.
Wang
,
Y.
,
Li
,
S.
,
Wang
,
D.
,
Ju
,
F.
,
Chen
,
B.
, and
Wu
,
H.
,
2019
, “
A New Adaptive Time-Delay Control Scheme for Cable-Driven Manipulators
,”
IEEE Trans. Ind. Inf.
,
15
(
6
), pp.
3469
3481
.10.1109/TII.2018.2876605
57.
Cao
,
L.
,
Xiao
,
B.
, and
Golestani
,
M.
,
2020
, “
Robust Fixed-Time Attitude Stabilization Control of Flexible Spacecraft With Actuator Uncertainty
,”
Nonlinear Dyn.
,
100
(
3
), pp.
2505
2519
.10.1007/s11071-020-05596-5
58.
Xiao
,
B.
,
Cao
,
L.
,
Xu
,
S.
, and
Liang
,
L.
,
2020
, “
Robust Tracking Control of Robot Manipulators With Actuator Faults and Joint Velocity Measurement Uncertainty
,”
IEEE/ASME Trans. Mecatronics
,
25
(
3
), pp.
1354
1365
.10.1109/TMECH.2020.2975117
59.
Suarez
,
R. H.
,
Diaz
,
A. M.
,
Guzman
,
N. F.
,
Martinez
,
E. H.
, and
Puebla
,
H.
,
2011
, “
High Order Sliding Mode Control for Suppression of Nonlinear Dynamics in Mechanical Systems With Friction
,”
Siding Mode Control
,
A.
Bartoszewicz
, ed.,
InTech
,
Rijeka, Croatia
.
60.
Hultèn
,
J.
,
1993
, “
Drum Brake Squeal—A Self Exciting Mechanism With Constant Friction
,” SAE Paper No. 932965.
61.
Sinou
,
J.-J.
, and
Jézéquel
,
L.
,
2007
, “
Mode Coupling Instability in Friction-Induced Vibrations and Its Dependency on System Parameters Including Damping
,”
Eur. J. Mech. A/Solid
,
26
(
1
), pp.
107
122
.10.1016/j.euromechsol.2006.03.002
62.
Zhang
,
Z.
,
Oberst
,
Z. S.
, and
Lai
,
J. C. S.
,
2016
, “
Influence of Contact Condition and Sliding Speed on Friction-Induced Instabilities
,”
23th International Congress on Sound and Vibration
, Athens, Greece, 10–14 July, pp.
1
8
.
63.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
,
E.
,
2011
, “
A Polynomial Chaos Approach to the Robust Analysis of the Dynamic Behaviour of Friction Systems
,”
Eur. J. Mech. A/Solids
,
30
(
4
), pp.
594
607
.10.1016/j.euromechsol.2011.03.002
64.
Isidori
,
A.
,
1993
,
Nonlinear Control Systems
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.