Abstract

This paper presents the methodological and technical aspects of the implementation of a hardware-in-the-loop experimental setup, suitable to simulate the dynamics of a floating system in wind tunnel experiments. The presented work is based on the specific application of a floating offshore wind turbine scale model, even if the approach holds also for floating systems in general, being subjected to the simultaneous action of wind and waves. The setup is based on a two degrees-of-freedom system, providing the motion of the floating system along surge and pitch. With reference to the implementation of the HIL test methodology the following topics are thoroughly analyzed: scaling issues, numerical issues, mechanical system characterization, force corrections, measurement, and signal processing. For each of these topics the methodological approach is presented, and the technical issues are described. A subset of results is then reported to show the effectiveness of such experimental apparatus, for different sea states: still water, regular, and irregular waves.

References

1.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
,
2005
, “
FAST User' s Guide
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/EL-500-38230.
2.
Robertson
,
A. N.
,
Jonkman
,
J. M.
,
Goupee
,
A. J.
,
Coulling
,
A. J.
,
Prowell
,
I.
,
Browning
,
J.
,
Masciola
,
M.
, and
Molta
,
P.
,
2013
, “
Summary of Conclusions and Recommendations Drawn From the Deep Wind Scaled Floating Offshore Wind System Test Campaign
,”
ASME
Paper No. OMAE2013-10817.10.1115/OMAE2013-10817
3.
Bayati
,
I.
,
Belloli
,
M.
,
Bernini
,
L.
,
Giberti
,
H.
, and
Zasso
,
A.
,
2017
, “
Scale Model Technology for Floating Offshore Wind Turbines
,”
IET Renewable Power Gener.
,
11
(
9
), pp.
1120
1126
.10.1049/iet-rpg.2016.0956
4.
Robertson
,
A. N.
,
Wendt
,
F.
,
Jonkman
,
J. M.
,
Popko
,
W.
,
Dagher
,
H.
,
Gueydon
,
S.
,
Qvist
,
J.
,
Vittori
,
F.
,
Azcona
,
J.
,
Uzunoglu
,
E.
,
Soares
,
C. G.
,
Harries
,
R.
,
Yde
,
A.
,
Galinos
,
C.
,
Hermans
,
K.
,
De Vaal
,
J. B.
,
Bozonnet
,
P.
,
Bouy
,
L.
,
Bayati
,
I.
,
Bergua
,
R.
,
Galvan
,
J.
,
Mendikoa
,
I.
,
Sanchez
,
C. B.
,
Shin
,
H.
,
Oh
,
S.
,
Molins
,
C.
, and
Debruyne
,
Y.
,
2017
, “
OC5 Project Phase II: Validation of Global Loads of the Deepcwind Floating Semisubmersible Wind Turbine
,”
Energy Procedia
,
137
, pp.
38
57
.10.1016/j.egypro.2017.10.333
5.
Robertson
,
A. N.
,
Bachynski
,
E. E.
,
Gueydon
,
S.
,
Wendt
,
F.
,
Schünemann
,
P.
, and
Jonkman
,
J.
,
2018
, “
Assessment of Experimental Uncertainty for a Floating Wind Semisubmersible Under Hydrodynamic Loading
,”
ASME
Paper No. OMAE2018-77703.10.1115/OMAE2018-77703
6.
Bayati
,
I.
,
Belloli
,
M.
,
Bernini
,
L.
, and
Zasso
,
A.
,
2017
, “
Aerodynamic Design Methodology for Wind Tunnel Tests of Wind Turbine Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
167
, pp.
217
227
.10.1016/j.jweia.2017.05.004
7.
Gueydon
,
S.
, and
Weller
,
S.
,
2013
, “
Study of a Floating Foundation for Wind Turbines
,”
ASME J. Offshore Mech. Arct. Eng.
,
135
(
3
), p.
31903
.10.1115/1.4024271
8.
LIFES50+, 2020, “Lifes50plus - Innovative Floating Offshore Wind Energy,” accessed Feb. 5, 2020, http://lifes50plus.eu/
9.
Sauder
,
T.
,
Chabaud
,
V.
,
Thys
,
M.
,
Bachynski
,
E.
, and
Sæther
,
L. O.
,
2016
, “
Real-Time Hybrid Model Testing of a Braceless Semi-Submersible Wind Turbine. part I: The Hybrid Approach
,”
ASME
Paper No. OMAE2016-54435.10.1115/OMAE2016-54435
10.
Gueydon
,
S.
,
Lindeboom
,
R.
,
Van Kampen
,
W.
, and
De Ridder
,
E. J.
,
2018
, “
Comparison of Two Wind Turbine Loading Emulation Techniques Based on Tests of a TLP-FOWT in Combined Wind, Waves and Current
,”
ASME
Paper No. IOWTC 2018.10.1115/IOWTC 2018
11.
Bayati
,
I.
,
Belloli
,
M.
,
Facchinetti
,
A.
, and
Giappino
,
S.
,
2013
, “
Wind Tunnel Tests on Floating Offshore Wind Turbines: A Proposal for Hardware-in-the-Loop Approach to Validate Numerical Codes
,”
Wind Eng.
,
37
(
6
), pp.
557
568
.10.1260/0309-524X.37.6.557
12.
Bayati
,
I.
,
Belloli
,
M.
,
Ferrari
,
D.
,
Fossati
,
F.
, and
Giberti
,
H.
,
2014
, “
Design of a 6-DoF Robotic Platform for Wind Tunnel Tests of Floating Wind Turbines
,”
Energy Procedia
,
53
(
C
), pp.
313
323
.10.1016/j.egypro.2014.07.240
13.
Bayati
,
I.
,
Belloli
,
M.
, and
Facchinetti
,
A.
,
2017
, “
Wind Tunnel 2-DoF Hybrid/HIL Tests on the OC5 Floating Offshore Wind Turbine
,”
ASME
Paper No. OMAE2017-61763.10.1115/OMAE2017-61763
14.
Bayati
,
I.
,
Facchinetti
,
A.
,
Fontanella
,
A.
,
Taruffi
,
F.
, and
Belloli
,
M.
,
2020
, “
Analysis of FOWT Dynamics in 2-DoF Hybrid HIL Wind Tunnel Experiments
,”
Ocean Eng.
,
195
, p.
106717
.10.1016/j.oceaneng.2019.106717
15.
Bayati
,
I.
,
Belloli
,
M.
,
Bernini
,
L.
,
Fiore
,
E.
,
Giberti
,
H.
, and
Zasso
,
A.
,
2016
, “
On the Functional Design of the DTU10 MW Wind Turbine Scale Model of LIFES50+ Project
,”
J. Phys.: Conf. Ser.
,
753
(
5
), p.
052018
.10.1088/1742-6596/753/5/052018
16.
GVPM, 2020, “Politecnico di Milano Wind Tunnel (GVPM),” accessed Feb. 5, 2020,
http://www.windtunnel.polimi.it/
17.
Cummins
,
W. E.
,
1962
, “
The Impulse Response Function and Ship Motions
,” Department of the Navy, David Taylor Model Basin, Bethesda, MD, Report No. 1661.
18.
Newman
,
J. N.
,
1977
,
Marine Hydrodynamics
,
The MIT Press
,
Cambridge, MA
.
19.
Perez
,
T.
, and
Fossen
,
T. I.
,
2008
, “
Joint Identification of Infinite-Frequency Added Mass and Fluid-Memory Models of Marine Structures
,”
Model. Identif. Control
,
29
(
3
), pp.
93
102
.10.4173/mic.2008.3.2
20.
Robertson
,
A. N.
,
2017
, “
Uncertainty Analysis of OC5-DeepCwind Floating Semisubmersible Offshore Wind Test Campaign
,”
Proceedings of the International Offshore and Polar Engineering Conference
, San Francisco, CA, June 25–30, pp.
482
489
.https://www.onepetro.org/conference-paper/ISOPE-I-17-349
21.
Perez
,
T.
, and
Fossen
,
T. I.
,
2009
, “
A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures
,”
Model. Identif. Control
,
30
(
1
), pp.
1
15
.10.4173/mic.2009.1.1
22.
Duarte
,
T. M.
,
Sarmento
,
A. J.
, and
Jonkman
,
J.
,
2014
, “
Effects of Second-Order Hydrodynamic Forces on Floating Offshore Wind Turbines
,”
AIAA
Paper No. 2014-0361.10.2514/6.2014-0361
23.
Lee
,
C.-H.
,
1995
, “
WAMIT Theory Manual
,” Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA, Report No. 95-2.
24.
Robertson
,
A. N.
,
Wendt
,
F.
,
Jonkman
,
J. M.
,
Popko
,
W.
,
Borg
,
M.
,
Bredmose
,
H.
,
Schlutter
,
F.
,
Qvist
,
J.
,
Bergua
,
R.
,
Harries
,
R.
,
Yde
,
A.
,
Nygaard
,
T. A.
,
Vaal
,
J. B. D.
,
Oggiano
,
L.
,
Bozonnet
,
P.
,
Bouy
,
L.
,
Sanchez
,
C. B.
,
García
,
R. G.
,
Bachynski
,
E. E.
,
Tu
,
Y.
,
Bayati
,
I.
,
Borisade
,
F.
,
Shin
,
H.
,
Van Der Zee
,
T.
, and
Guerinel
,
M.
,
2016
, “
OC5 Project Phase Ib: Validation of Hydrodynamic Loading on a Fixed, Flexible Cylinder for Offshore Wind Applications
,”
Energy Procedia
,
94
, pp.
82
101
.10.1016/j.egypro.2016.09.201
25.
Jonkman
,
J. M.
,
Robertson
,
A. N.
, and
Hayman
,
G. J.
,
2015
, “
HydroDyn User's Guide and Theory Manual
,” National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-xxxx-xxxxx (DRAFT).
26.
Bayati
,
I.
,
Facchinetti
,
A.
,
Fontanella
,
A.
, and
Belloli
,
M.
,
2018
, “
6-dof Hydrodynamic Modelling for Wind Tunnel Hybrid/Hil Tests of Fowt: The Real-Time Challenge
,”
ASME
Paper No. OMAE2018-77804.10.1115/OMAE2018-77804
You do not currently have access to this content.