A new nonlinear adaptive impedance-based trilateral controller is proposed to ensure the absolute stability of multi-degrees-of-freedom (DOFs) dual-user haptic teleoperation systems subjected to communication delays. Using this strategy, reference impedance models are realized for the trilateral teleoperation system represented by a three-port network to facilitate cooperation of two human operators in order to perform a remote physical task. For this purpose, an impedance model defines the desired haptic interaction between the two human operators, while another impedance model specifies the desired behavior of the slave robot in terms of tracking the mater robots' trajectories during interaction with the remote environment. It is shown that different performance goals such as position synchronization and force reflection can be achieved via different adjustments to the impedance parameters. The sufficient conditions for the trilateral haptic system's absolute stability are investigated in terms of the impedance models' parameters. Accordingly, guidelines for modification of the impedance parameters are obtained to guarantee the absolute stability of the trilateral haptic system in the presence of communication time delays. A trilateral nonlinear version of the model reference adaptive impedance control (MRAIC) scheme is developed for implementing the proposed reference impedance models on the masters and the slave. The convergence of robots' trajectories to desired responses and the robustness against modeling uncertainties are ensured using the proposed controller as proven by the Lyapunov stability theorem. The proposed impedance-based control strategy is evaluated experimentally by employing a nonlinear multi-DOFs teleoperated trilateral haptic system with and without communication delays.

References

1.
Nudehi
,
S. S.
,
Mukherjee
,
R.
, and
Ghodoussi
,
M.
,
2005
, “
A Shared-Control Approach to Haptic Interface Design for Minimally Invasive Telesurgical Training
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
588
592
.
2.
Shamaei
,
K.
,
Kim
,
L. H.
, and
Okamura
,
A. M.
,
2015
, “
Design and Evaluation of a Trilateral Shared-Control Architecture for Teleoperated Training Robots
,”
International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC
), Milan, Italy, Aug. 25–29, pp.
4887
4893
.
3.
Carignan
,
C. R.
, and
Olsson
,
P. A.
,
2004
, “
Cooperative Control of Virtual Objects Over the Internet Using Force-Reflecting Master Arms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), New Orleans, LA, Apr. 26–May 1, pp.
1221
1226
.
4.
Gupta
,
A.
, and
O'malley
,
M. K.
,
2006
, “
Design of a Haptic Arm Exoskeleton for Training and Rehabilitation
,”
IEEE/ASME Trans. Mechatronics
,
11
(
3
), pp.
280
289
.
5.
Malysz
,
P.
, and
Sirouspour
,
S.
,
2009
, “
Dual-Master Teleoperation Control of Kinematically Redundant Robotic Slave Manipulators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), St. Louis, MO, Oct. 10–15, pp.
5115
5120
.
6.
Colgate
,
J. E.
,
1993
, “
Robust Impedance Shaping Telemanipulation
,”
IEEE Trans. Rob. Autom.
,
9
(
4
), pp.
374
384
.
7.
Dongjun
,
L.
, and
Li
,
P. Y.
,
2003
, “
Passive Bilateral Feedforward Control of Linear Dynamically Similar Teleoperated Manipulators
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
443
456
.
8.
Lawrence
,
D. A.
,
1993
, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
,
9
(
5
), pp.
624
637
.
9.
Yokokohji
,
Y.
, and
Yoshikawa
,
T.
,
1994
, “
Bilateral Control of Master-Slave Manipulators for Ideal Kinesthetic Coupling-Formulation and Experiment
,”
IEEE Trans. Rob. Autom.
,
10
(
5
), pp.
605
620
.
10.
Polushin
,
I. G.
,
Liu
,
P. X.
,
Lung
,
C.-H.
, and
On
,
G. D.
,
2010
, “
Position-Error Based Schemes for Bilateral Teleoperation With Time Delay: Theory and Experiments
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
3
), p.
031008
.
11.
Lee
,
H. K.
, and
Chung
,
M. J.
,
1998
, “
Adaptive Controller of a Master–Slave System for Transparent Teleoperation
,”
J. Rob. Syst.
,
15
(
8
), pp.
465
475
.
12.
Shi
,
M.
,
Tao
,
G.
, and
Liu
,
H.
,
2002
, “
Adaptive Control of Teleoperation Systems
,”
J. X-Ray Sci. Technol.
,
10
(
1–2
), pp.
37
57
.http://content.iospress.com/articles/journal-of-x-ray-science-and-technology/xst00056
13.
Wen-Hong
,
Z.
, and
Salcudean
,
S. E.
,
2000
, “
Stability Guaranteed Teleoperation: An Adaptive Motion/Force Control Approach
,”
IEEE Trans. Autom. Control
,
45
(
11
), pp.
1951
1969
.
14.
Malysz
,
P.
, and
Sirouspour
,
S.
,
2009
, “
Nonlinear and Filtered Force/Position Mappings in Bilateral Teleoperation With Application to Enhanced Stiffness Discrimination
,”
IEEE Trans. Rob.
,
25
(
5
), pp.
1134
1149
.
15.
Lee
,
D.
, and
Spong
,
M. W.
,
2006
, “
Passive Bilateral Teleoperation With Constant Time Delay
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
269
281
.
16.
Chopra
,
N.
,
Spong
,
M. W.
, and
Lozano
,
R.
,
2008
, “
Synchronization of Bilateral Teleoperators With Time Delay
,”
Automatica
,
44
(
8
), pp.
2142
2148
.
17.
Nuño
,
E.
,
Ortega
,
R.
, and
Basañez
,
L.
,
2010
, “
An Adaptive Controller for Nonlinear Teleoperators
,”
Automatica
,
46
(
1
), pp.
155
159
.
18.
Liu
,
Y. C.
, and
Chopra
,
N.
,
2013
, “
Control of Semi-Autonomous Teleoperation System With Time Delays
,”
Automatica
,
49
(
6
), pp.
1553
1565
.
19.
Ryu
,
J. H.
, and
Kwon
,
D. S.
,
2001
, “
A Novel Adaptive Bilateral Control Scheme Using Similar Closed-Loop Dynamic Characteristics of Master/Slave Manipulators
,”
J. Rob. Syst.
,
18
(
9
), pp.
533
543
.
20.
Liu
,
X.
, and
Tavakoli
,
M.
,
2012
, “
Adaptive Control of Teleoperation Systems With Linearly and Nonlinearly Parameterized Dynamic Uncertainties
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
2
), p.
021015
.
21.
Sharifi
,
M.
,
Behzadipour
,
S.
, and
Salarieh
,
H.
,
2016
, “
Nonlinear Bilateral Adaptive Impedance Control With Applications in Telesurgery and Telerehabilitation
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
11
), p.
111010
.
22.
Lo
,
W.
,
Liu
,
Y.
,
Elhajj
,
I. H.
,
Xi
,
N.
,
Wang
,
Y.
, and
Fukuda
,
T.
,
2004
, “
Cooperative Teleoperation of a Multirobot System With Force Reflection Via Internet
,”
IEEE/ASME Trans. Mechatronics
,
9
(
4
), pp.
661
670
.
23.
Katsura
,
S.
,
Matsumoto
,
Y.
, and
Ohnishi
,
K.
,
2005
, “
Realization of ‘Law of Action and Reaction’ by Multilateral Control
,”
IEEE Trans. Ind. Electron.
,
52
(
5
), pp.
1196
1205
.
24.
Katsura
,
S.
, and
Ohnishi
,
K.
,
2006
, “
A Realization of Haptic Training System by Multilateral Control
,”
IEEE Trans. Ind. Electron.
,
53
(
6
), pp.
1935
1942
.
25.
Sirouspour
,
S.
,
2005
, “
Modeling and Control of Cooperative Teleoperation Systems
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1220
1225
.
26.
Moghimi
,
S.
,
Sirouspour
,
S.
, and
Malysz
,
P.
,
2008
, “
Haptic-Enabled Collaborative Training With Generalized Force and Position Mappings
,”
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Reno, NV, Mar. 13–14, pp.
287
294
.
27.
Gueaieb
,
W.
,
Karray
,
F.
, and
Al-Sharhan
,
S.
,
2007
, “
A Robust Hybrid Intelligent Position/Force Control Scheme for Cooperative Manipulators
,”
IEEE/ASME Trans. Mechatronics
,
12
(
2
), pp.
109
125
.
28.
Khademian
,
B.
, and
Hashtrudi-Zaad
,
K.
,
2012
, “
Dual-User Teleoperation Systems: New Multilateral Shared Control Architecture and Kinesthetic Performance Measures
,”
IEEE/ASME Trans. Mechatronics
,
17
(
5
), pp.
895
906
.
29.
Khademian
,
B.
,
Apkarian
,
J.
, and
Hashtrudi-Zaad
,
K.
,
2011
, “
Assessment of Environmental Effects on Collaborative Haptic Guidance
,”
Presence: Teleoperators Virtual Environ.
,
20
(
3
), pp.
191
206
.
30.
Wang
,
Y.
,
Sun
,
F.
,
Liu
,
H.
, and
Li
,
Z.
,
2010
, “
Passive Four-Channel Multilateral Shared Control Architecture in Teleoperation
,”
IEEE International Conference on Cognitive Informatics
(
ICCI
), Beijing, China, July 7–9, pp.
851
858
.
31.
Mendez
,
V.
, and
Tavakoli
,
M.
,
2010
, “
A Passivity Criterion for N-Port Multilateral Haptic Systems
,”
IEEE Conference on Decision and Control
(
CDC
), Atlanta, GA, Dec. 15–17, pp.
274
279
.
32.
Panzirsch
,
M.
,
Artigas
,
J.
,
Tobergte
,
A.
,
Kotyczka
,
P.
,
Preusche
,
C.
,
Albu-Schaeffer
,
A.
, and
Hirzinger
,
G.
,
2012
, “
A Peer-to-Peer Trilateral Passivity Control for Delayed Collaborative Teleoperation
,”
Haptics: Perception, Devices, Mobility, and Communication
,
Springer
,
Berlin
, pp. 395–407.
33.
Hashemzadeh
,
F.
,
Sharifi
,
M.
, and
Tavakoli
,
M.
,
2016
, “
Nonlinear Trilateral Teleoperation Stability Analysis Subjected to Time-Varying Delays
,”
Control Eng. Pract.
,
56
, pp.
123
135
.
34.
Li
,
J.
,
Tavakoli
,
M.
,
Mendez
,
V.
, and
Huang
,
Q.
,
2015
, “
Passivity and Absolute Stability Analyses of Trilateral Haptic Collaborative Systems
,”
J. Intell. Rob. Syst.
,
78
(
1
), pp.
3
20
.
35.
Shahbazi
,
M.
,
Atashzar
,
S. F.
,
Talebi
,
H. A.
, and
Patel
,
R. V.
,
2015
, “
Novel Cooperative Teleoperation Framework: Multi-Master/Single-Slave System
,”
IEEE/ASME Trans. Mechatronics
,
20
(
4
), pp.
1668
1679
.
36.
Kuo
,
R. F.
, and
Chu
,
T. H.
,
2010
, “
Unconditional Stability Boundaries of a Three-Port Network
,”
IEEE Trans. Microwave Theory Tech.
,
58
(
2
), pp.
363
371
.
37.
Khademian
,
B.
, and
Hashtrudi-Zaad
,
K.
,
2011
, “
Shared Control Architectures for Haptic Training: Performance and Coupled Stability Analysis
,”
Int. J. Rob. Res.
,
30
(
13
), pp.
1627
1642
.
38.
Khademian
,
B.
, and
Hashtrudi-Zaad
,
K.
,
2013
, “
A Framework for Unconditional Stability Analysis of Multimaster/Multislave Teleoperation Systems
,”
IEEE Trans. Rob.
,
29
(
3
), pp.
684
694
.
39.
Haykin
,
S. S.
,
1970
,
Active Network Theory
,
Addison-Wesley
,
Boston, MA
.
40.
Li
,
J.
,
Tavakoli
,
M.
, and
Huang
,
Q.
,
2014
, “
Absolute Stability of a Class of Trilateral Haptic Systems
,”
IEEE Trans. Haptics
,
7
(
3
), pp.
301
310
.
41.
Sharifi
,
M.
,
Behzadipour
,
S.
, and
Vossoughi
,
G.
,
2014
, “
Nonlinear Model Reference Adaptive Impedance Control for Human–Robot Interactions
,”
Control Eng. Pract.
,
32
, pp.
9
27
.
42.
Lu
,
W. S.
, and
Meng
,
Q. H.
,
1991
, “
Impedance Control With Adaptation for Robotic Manipulations
,”
IEEE Trans. Rob. Autom.
,
7
(
3
), pp.
408
415
.
43.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
44.
Sharifi
,
M.
,
Behzadipour
,
S.
, and
Vossoughi
,
G. R.
,
2014
, “
Model Reference Adaptive Impedance Control in Cartesian Coordinates for Physical Human–Robot Interaction
,”
Adv. Rob.
,
28
(
19
), pp.
1277
1290
.
45.
Nuño
,
E.
,
Basañez
,
L.
, and
Ortega
,
R.
,
2011
, “
Passivity-Based Control for Bilateral Teleoperation: A Tutorial
,”
Automatica
,
47
(
3
), pp.
485
495
.
46.
Hashemzadeh
,
F.
,
Hassanzadeh
,
I.
,
Tavakoli
,
M.
, and
Alizadeh
,
G.
,
2012
, “
A New Method for Bilateral Teleoperation Passivity Under Varying Time Delays
,”
Math. Probl. Eng.
,
12
(
1
), pp.
1
19
.
47.
Haddadi
,
A.
, and
Hashtrudi-Zaad
,
K.
,
2010
, “
Bounded-Impedance Absolute Stability of Bilateral Teleoperation Control Systems
,”
IEEE Trans. Haptics
,
3
(
1
), pp.
15
27
.
48.
Hashtrudi-Zaad
,
K.
, and
Salcudean
,
S. E.
, “
Analysis of Control Architectures for Teleoperation Systems With Impedance/Admittance Master and Slave Manipulators
,”
Int. J. Rob. Res.
,
20
(
6
), pp.
419
445
.
49.
Li
,
J.
,
Tavakoli
,
M.
, and
Huang
,
Q.
,
2014
, “
Absolute Stability of Multi-DOF Multilateral Haptic Systems
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2319
2328
.
50.
Çavuşoğlu
,
M. C.
,
Feygin
,
D.
, and
Tendick
,
F.
,
2002
, “
A Critical Study of the Mechanical and Electrical Properties of the Phantom Haptic Interface and Improvements for High-Performance Control
,”
Presence: Teleoperators Virtual Environ.
,
11
(
6
), pp.
555
568
.
51.
Dyck
,
M. D.
,
2013
, “
Measuring the Dynamic Impedance of the Human Arm
,”
Ph.D. thesis
, University of Alberta, Edmonton, AB, Canada.https://era.library.ualberta.ca/files/rf55z923v#.WVtP8We6amQ
52.
Dyck
,
M.
, and
Tavakoli
,
M.
,
2013
, “
Measuring the Dynamic Impedance of the Human Arm Without a Force Sensor
,”
IEEE International Conference on Rehabilitation Robotics
(
ICORR
), Seattle, WA, June 24–26, pp.
1
8
.
You do not currently have access to this content.