Parallel turning is an excellent candidate for keeping up with current trends set by manufacturing industry, namely, to increase accuracy and productivity simultaneously. In the field of manufacturing of cylindrical parts, these cutting processes offer huge potential in increasing productivity, since they ensure high material removal rates and appropriate accuracy at the same time. The above benefits can yet only be harvested if the process is free of chatter vibration, which affects the workpiece surface quality. In this study, it is shown that by means of tuning the dynamical properties of cutting tools, it is possible to expand the stable machining parameter regions in order to eliminate adverse chatter. A parallel turning system is investigated, where tuning of the system is realized by varying the overhang of one of the tools, that is, by modulating the frequency ratio of the cutters. Measurements have been carried out for the validation of the theoretical predictions of robustly stable chip width limits, below which the turning operation is stable for all spindle speed values.

References

1.
Taylor
,
F. W.
,
1907
,
On the Art of Cutting Metals
,
Transactions of the American Society of Mechanical Engineers
,
New York
.
2.
Tlusty
,
J.
, and
Spacek
,
L.
,
1954
,
Self-Excited Vibrations on Machine Tools
, Nakl. CSAV, Prague, Czech.
3.
Tobias
,
S. A.
,
1965
,
Machine Tool Vibration
,
Blackie and Son
,
London, UK
.
4.
Altintas
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann. - Manuf. Technol.
,
44
(
1
), pp.
357
362
.
5.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
6.
Balachandran
,
B.
,
2001
, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. R. Soc. A
,
359
(
1781
), pp.
793
819
.
7.
Pegov
,
V. B.
,
Deich
,
G. B.
,
Dvorkin
,
S. Y.
, and
Ukholov
,
K. V.
,
1980
, U.S. Patent No. 4,359,916 A.
8.
Karpus
,
V. E.
, and
Kotlyar
,
A. V.
,
2007
, “
Multicutter Machining on Numerically Controlled Lathes
,”
Russ. Eng. Res.
,
27
(
12
), pp.
884
887
.
9.
Budak
,
E.
, and
Ozturk
,
E.
,
2011
, “
Dynamics and Stability of Parallel Turning Operations
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
383
386
.
10.
Ozturk
,
E.
, and
Budak
,
E.
,
2010
, “
Modeling Dynamics of Parallel Turning Operations
,”
Fourth CIRP International Conference on High Performance Cutting
,
Gifu
,
Japan
, Oct. 24–26.
11.
Gouskov
,
A.
,
Voronov
,
S.
,
Paris
,
A.
, and
Batzer
,
S. A.
,
2001
, “
Cylindrical Workpiece Turning Using Multiple-Cutter Tool Heads
,” ASME International Design Engineering Technical Conference, Pittsburgh, PA, Sept. 9–12.
12.
Reith
,
M. J.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2016
, “
Improving Stability of Multi-Cutter Turning With Detuned Dynamics
,”
Mach. Sci. Technol.
,
20
(
3
), pp.
440
459
.
13.
Lazoglu
,
I.
,
Vogler
,
M.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
1998
, “
Dynamics of the Simultaneous Turning Process
,”
Transactions of the North American Manufacturing Research Conference NAMRC XXVI
, pp.
135
140
.
14.
Ozdoganlar
,
O. B.
, and
Endres
,
W. J.
,
1999
, “
Parallel-Process (Simultaneous) Machining and Its Stability
,” IMECE/ASME International Mechanical Engineering Congress and Exposition, Nashville, Tennessee, Nov. 14–19.
15.
Budak
,
E.
, and
Tekeli
,
E.
,
2005
, “
Maximizing Chatter Free Material Removal Rate in Milling Through Optimal Selection of Axial and Radial Depth of Cut Pairs
,”
CRIP Annals - Manufacturing Technology
,
54
(
1
), pp.
353
356
.
16.
Altintas
,
Y.
,
Kersting
,
P.
,
Biermann
,
D.
,
Budak
,
E.
,
Denkena
,
B.
, and
Lazoglu
,
I.
,
2014
, “
Virtual Process Systems for Part Machining Operations
,”
CIRP Ann. Manuf. Technol.
,
63
(
2
), pp.
585
605
.
17.
Reith
,
M. J.
, and
Stepan
,
G.
,
2012
, “
Optimization of Material Removal Rate for Orthogonal Cutting With Vibration Limits
,”
Period. Polytech. Mech. Eng.
,
56
(
2
), pp.
91
97
.
18.
Reith
,
M. J.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2013
, “
Stability Properties and Optimization of Multi-Cutter Turning Operations
,”
ASME
Paper No. DETC2013-12347.
19.
Stepan
,
G.
,
1989
,
Retarded Dynamical Systems
,
Longman
,
Harlow
.
20.
Bachrathy
,
D.
,
2012
, “
Multi-Dimensional Bisection Method (mdbm)
,” accessed 2012, http://www.mm.bme.hu/~bdaniel/
21.
Bachrathy
,
D.
, and
Stepan
,
G.
,
2012
, “
Bisection Method in Higher Dimensions and the Efficiency Number
,”
Period. Polytech. Mech. Eng.
,
56
(
2
), pp.
81
86
.
22.
Reith
,
M. J.
,
Bachrathy
,
D.
, and
Stepan
,
G.
,
2015
, “
Optimization of the Robust Stability Limit for Multi-Cutter Turning Processes
,”
ASME
Paper No. DETC2015-47484.
23.
Bachrathy
,
D.
,
2015
, “
Robust Stability Limit of Delayed Dynamical Systems
,”
Period. Polytech. Mech. Eng.
,
57
(
1
), pp.
1
7
.
24.
Timoshenko
,
S.
,
1976
,
Strength of Materials
, 3rd ed.,
Krieger Publishing Company
,
Malabar, FL
.
25.
McLean
,
W. G.
, and
Nelson
,
E. W.
,
1988
,
Engineering Mechanics, Statics and Dynamics
(Schaum's Outline Series),
McGraw-Hill
,
New York
.
26.
Altintas
,
Y.
,
2000
, “
Modeling Approaches and Software for Predicting the Performance of Milling Operations at Mal-Ubc
,”
Int. J. Mach. Sci. Technol.
,
4
(
3
), pp.
445
478
.
27.
Gradišek
,
J.
,
Kalveram
,
M.
, and
Weinert
,
K.
,
2004
, “
Mechanistic Identification of Specific Force Coefficients for a General End Mill
,”
Int. J. Mach. Tools Manuf.
,
44
(
5
), pp.
401
414
.
You do not currently have access to this content.