This paper proposes a model-based gain scheduling strategy of a Skogestad internal model control (SIMC)-based boost pressure controller for passenger car diesel engines. This gain scheduling strategy is proposed with a new scheduling variable to handle the nonlinear variable geometric turbocharger (VGT) plant characteristics. The scheduling variable is derived from the pressure ratio between the exhaust and intake manifolds and the exhaust air-to-fuel ratio to estimate the static gain of the VGT plant, which varies widely with change in the engine operating conditions. The proposed static gain model was designed with the scheduling variable, engine speed, and fuel injection quantity. Compared to the steady-state experimental data, the static gain model showed an R-squared value of 0.91. The boost pressure controller had the proportional-integral (PI) structure to allow for online calibration, and the PI gains were determined using the SIMC method. The proposed static gain model for the VGT plant was integrated into the SIMC control structure to obtain the appropriate control gains under wide engine operating area. The proposed control algorithm was compared with a fixed gain boost pressure controller through various step tests of the desired boost pressure. The fixed gain controller showed a large overshoot of 64% when the exhaust gas recirculation (EGR) operating condition was changed. In contrast, the proposed gain scheduled boost pressure controller reduced the overshoot to 12%. The model-based gain scheduling strategy successfully adjusted the control gains to achieve consistent control performance under various engine operating conditions.

References

1.
Alfieri
,
E.
,
2009
, “
Emissions-Controlled Diesel Engine
,” Doctoral dissertation, Swiss Federal Institute of Technology, Zurich, Switzerland.
2.
Alfieri
,
E.
,
Amstutz
,
A.
, and
Guzzella
,
L.
,
2009
, “
Gain-Scheduled Model-Based Feedback Control of the Air/Fuel Ratio in Diesel Engines
,”
Control Eng. Pract.
,
17
(
12
), pp.
1417
1425
.
3.
Hillion
,
M.
,
Chauvin
,
J.
, and
Petit
,
N.
,
2011
, “
Control of Highly Diluted Combustion in Diesel Engines
,”
Control Eng. Pract.
,
19
(
11
), pp.
1274
1286
.
4.
Guzzella
,
L.
, and
Amstutz
,
A.
,
1998
, “
Control of Diesel Engines
,”
IEEE Control Syst.
,
18
(
5
), pp.
53
71
.
5.
Bosche
,
J. O.
, and
El Hajjaji
,
A.
,
2014
, “
Modeling and Dynamical Feedback Control of a Vehicle Diesel Engine Speed and Air-Path
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
6
), p.
061010
.
6.
Bengea
,
S.
,
DeCarlo
,
R.
,
Corless
,
M.
, and
Rizzoni
,
G.
,
2005
, “
A Polytopic System Approach for the Hybrid Control of a Diesel Engine Using VGT/EGR
,”
ASME J. Dyn. Syst. Meas. Control
,
127
(
1
), pp.
13
21
.
7.
Wahlström
,
J.
, and
Eriksson
,
L.
,
2011
, “
Modeling Diesel Engines With a Variable-Geometry Turbocharger and Exhaust Gas Recirculation by Optimization of Model Parameters for Capturing Non-Linear System Dynamics
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
225
(
7
), pp.
960
986
.
8.
Silva
,
G. J.
,
Datta
,
A.
, and
Bhattacharyya
,
S. P.
,
2007
,
PID Controllers for Time-Delay Systems
,
Springer
, New York/Philadelphia.
9.
Wahlström
,
J.
, and
Eriksson
,
L.
,
2010
, “
Nonlinear Input Transformation for egr and vgt
,”
SAE Int. J. Engines
,
3
(
2
), pp.
288
305
.
10.
Kolmanovsky
,
I.
,
Morall
,
P.
,
Van Nieuwstadt
,
M.
, and
Stefanopoulou
,
A.
,
1999
,
Issues in Modeling and Control of Intake Flow in Variable Geometry Turbocharged Engines
,
Chapman and Hall CRC Research Notes in Mathematics
, Boca Raton, FL, pp.
436
445
.
11.
Wahlström
,
J.
,
Eriksson
,
L.
, and
Nielsen
,
L.
,
2010
, “
EGR-VGT Control and Tuning for Pumping Work Minimization and Emission Control
,”
IEEE Trans. Control Syst. Technol.
,
18
(
4
), pp.
993
1003
.
12.
Utkin
,
V. L.
,
Hao-Chi
,
C.
,
Kolmanovsky
,
I.
, and
Cook
,
J. A.
,
2000
, “
Sliding Mode Control for Variable Geometry Turbocharged Diesel Engines
,”
American Control Conference
, Vol.
581
, pp.
584
588
.
13.
Rajamani
,
R.
,
2005
, “
Control of a Variable-Geometry Turbocharged and Wastegated Diesel Engine
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
219
(
11
), pp.
1361
1368
.
14.
Hong
,
S.
,
Park
,
I.
,
Sohn
,
J.
, and
Sunwoo
,
M.
,
2014
, “
Dynamic Decoupler Design for EGR and VGT Systems in Passenger Car Diesel Engines
,”
Trans. Korean Soc. Automot. Eng.
,
22
(
2
), pp.
182
189
.
15.
Wahlstrom
,
J.
,
2009
, “
Control of EGR and VGT for Emission Control and Pumping Work Minimization in Diesel Engines
,” Ph.D. thesis, Linköping University, Institutionen för systemteknik, Sweden.
16.
Wahlström
,
J.
,
2006
, “
Control of EGR and VGT for Emission Control and Pumping Work Minimization in Diesel Engines
,” Licentiate thesis, Linköping University, Institutionen för systemteknik, Sweden.
17.
Van Nieuwstadt
,
M. J.
,
Kolmanovsky
,
I. V.
,
Moraal
,
P. E.
,
Stefanopoulou
,
A.
, and
Jankovic
,
M.
,
2000
, “
EGR-VGT Control Schemes: Experimental Comparison for a High-Speed Diesel Engine
,”
IEEE Control Syst.
,
20
(
3
), pp.
63
79
.
18.
Yoon
,
Y.
,
Choi
,
S.
,
Ko
,
M.
, and
Lim
,
J.
,
2010
, “
Simplified Turbocharged Diesel Engine Air Path Modeling and Control Using Sliding Mode Controllers
,”
Korean Society of Automotive Engineering Conference
,
Seoul, Korea
, pp.
548
558
.
19.
Oh
,
B.
,
2011
, “
Coordinated Control of Diesel Engine Air System Using Artificial Neural Network
,” Ph.D. thesis, Hanyang University, Seoul, Korea.
20.
Oh
,
B.
,
Lee
,
M.
,
Park
,
Y.
,
Sohn
,
J.
,
Won
,
J. S.
, and
Sunwoo
,
M.
,
2013
, “
VGT and EGR Control of Common-Rail Diesel Engines Using an Artificial Neural Network
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
012801
.
21.
Maruyama
,
T.
,
Ejiri
,
A.
,
Ikai
,
Y.
, and
Shimotani
,
K.
,
2012
, “
Model Predictive Control Considering Disturbances in Diesel Engine Air Intake Systems
,”
Proceedings of the International Conference on Control Applications (CCA)
,
IEEE, Dubrovnik
, pp.
401
408
.
22.
Ortner
,
P.
, and
del Re
,
L.
,
2007
, “
Predictive Control of a Diesel Engine Air Path
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
449
456
.
23.
Saerens
,
B.
,
Diehl
,
M.
,
Swevers
,
J.
, and
Van Den Bulck
,
E.
,
2008
, “
Model Predictive Control of Automotive Powertrains - First Experimental Results
,”
47th IEEE Conference on Decision and Control (CDC)
,
Cancun
, pp.
5692
5697
.
24.
Luján
,
J. M.
,
Climent
,
H.
,
Guardiola
,
C.
, and
García-Ortiz
,
J. V.
,
2007
, “
A Comparison of Different Algorithms for Boost Pressure Control in a Heavy-Duty Turbocharged Diesel Engine
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
221
(
5
), pp.
629
640
.
25.
Wahlstrom
,
J.
, and
Eriksson
,
L.
,
2013
, “
Output Selection and Its Implications for MPC of EGR and VGT in Diesel Engines
,”
IEEE Trans. Control Syst. Technol.
21
(
3
), pp.
932
940
.
26.
Lee
,
M.
, and
Sunwoo
,
M.
,
2012
, “
Modelling and H ∞ Control of Diesel Engine Boost Pressure Using a Linear Parameter Varying Technique
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
226
(
2
), pp.
210
224
.
27.
Xiukun
,
W.
, and
del Re
,
L.
,
2007
, “
Gain Scheduled Hinf Control for Air Path Systems of Diesel Engines Using LPV Techniques
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
406
415
.
28.
Park
,
I.
,
Hong
,
S.
,
Shin
,
J.
, and
Sunwoo
,
M.
,
2013
, “
Robust Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory
,”
Trans. Korean Soc. Automot. Eng.
,
21
(
3
), pp.
88
97
.
29.
Wang
,
Y.-Y.
,
Haskara
,
I.
, and
Yaniv
,
O.
,
2011
, “
Quantitative Feedback Design of Air and Boost Pressure Control System for Turbocharged Diesel Engines
,”
Control Eng. Pract.
,
19
(
6
), pp.
626
637
.
30.
Zentner
,
S.
,
Schäfer
,
E.
,
Fast
,
G.
,
Onder
,
C. H.
, and
Guzzella
,
L.
,
2014
, “
A Cascaded Control Structure for Air-Path Control of Diesel Engines
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
228
(
7
), pp.
799
817
.
31.
Skogestad
,
S.
,
2004
, “
Simple Analytic Rules for Model Reduction and PID Controller Tuning
,”
Model. Ident. Control
,
25
(
2
), pp.
85
120
.
32.
Rajapandiyan
,
C.
, and
Chidambaram
,
M.
,
2012
, “
Controller Design for MIMO Processes Based on Simple Decoupled Equivalent Transfer Functions and Simplified Decoupler
,”
Ind. Eng. Chem. Res.
,
51
(
38
), pp.
12398
12410
.
33.
Luján
,
J. M.
,
Guardiola
,
C.
,
Pla
,
B.
, and
Cabrera
,
P.
,
2014
, “
Considerations on the Low-Pressure Exhaust Gas Recirculation System Control in Turbocharged Diesel Engines
,”
Int. J. Engine Res.
,
15
(
2
), pp.
250
260
.
34.
Holliday
,
T.
,
Lawrance
,
A. J.
, and
Davis
,
T. P.
,
1998
, “
Engine-Mapping Experiments: A Two-Stage Regression Approach
,”
Technometrics
,
40
(
2
), pp.
120
126
.
35.
Lee
,
Y.
,
Park
,
S.
,
Lee
,
M.
, and
Brosilow
,
C.
,
1998
, “
PID Controller Tuning for Desired Closed-Loop Responses for SI/SO Systems
,”
AIChE J.
,
44
(
1
), pp.
106
115
.
36.
Park
,
I.
,
Lee
,
W.
, and
Sunwoo
,
M.
,
2012
, “
Application Software Modeling and Integration Methodology Using AUTOSAR-Ready Light Software Architecture
,”
Trans. Korean Soc. Automot. Eng.
,
20
(
6
), pp.
117
125
.
37.
Lee
,
K.
,
Park
,
I.
,
Sunwoo
,
M.
, and
Lee
,
W.
,
2012
, “
AUTOSAR-Ready Light Software Architecture for Automotive Embedded Control Systems
,”
Trans. Korean Soc. Automot. Eng.
,
21
(
1
), pp.
68
77
.
You do not currently have access to this content.