In this paper, a new dynamic recurrent online sequential-extreme learning machine (DROS-ELM) OS-ELM with differential vector-kernel based principal component analysis (DV-KPCA) fault recognition approach is proposed to reconstruct the process feature and detect the process faults for real-time nonlinear system. Toward this end, the differential vector plus KPCA is first proposed to reduce the dimension of process data and enlarge the feature difference. In DV-KPCA, the differential vector is the difference between the input sample and the common sample, which is obtained from the historical data and represents the common invariant properties of the class. The optimal feature vectors of input sample and the common sample are obtained by KPCA procedure for the difference vectors. Through the differential operation between the input vectors and the common vectors, the reconstructed feature is derived by calculating the two-norm distance for the result of differential operation. The reconstructed features are then utilized to detect the process faults that may occur. In order to enhance the accuracy of fault recognition, a new DROS-ELM is developed by adding a self-feedback unit from the output of hidden layer to the input of hidden layer to record the sequential information. In the DROS-ELM, the output weight of feedback layer is updated dynamically by the change rate of output of the hidden layer. The DV-KPCA for feature reconstruction is exemplified using UCI handwriting (UCI handwriting recognition data: Database, using “Pen-Based Recognition of Handwritten Digits” produced in the Department of Computer Engineering Bogazici University, Istanbul 80815, Turkey, 1998), which the classification accuracy is obviously enhanced. Meanwhile, the DROS-ELM for process prediction is tested by the sunspot data from 1700 to 1987, which also shows better prediction accuracy than common methods. Finally, the new joint DROS-ELM with DV-KPCA method is exemplified in the complicated Tennessee Eastman (TE) benchmark process to illustrate the efficiencies. The results show that the DROS-ELM with DV-KPCA shows superiority not only in detection sensitivity and stability but also in timely fault recognition.

References

1.
Arinton
,
E.
,
Caraman
,
S.
, and
Korbicz
,
J.
,
2012
, “
Neural Networks for Modelling and Fault Detection of the Inter-Stand Strip Tension of a Cold Tandem Mill
,”
Control Eng. Pract.
,
20
(
7
), pp.
684
694
.10.1016/j.conengprac.2012.03.007
2.
Jack
,
L. B.
, and
Nandi
,
A. K.
,
2002
, “
Fault Detection Using Support Vector Machines and Artificial Neural Networks, Augmented by Genetic Algorithms
,”
Mech. Syst. Signal Process.
,
16
(
2
), pp.
373
390
.10.1006/mssp.2001.1454
3.
Li
,
Z.
,
Yan
,
X.
,
Yuan
,
C.
, Zhao, J., and Peng, Z.,
2011
, “
Fault Detection and Diagnosis of a Gearbox in Marine Propulsion Systems Using Bispectrum Analysis and Artificial Neural Networks
,”
J. Mar. Sci. Appl.
,
10
(
1
), pp.
17
24
.10.1007/s11804-011-1036-7
4.
Perera
,
N.
, and
Rajapakse
,
A. D.
,
2011
, “
Recognition of Fault Transients Using a Probabilistic Neural-Network Classifier
,”
IEEE Trans. Power Delivery
,
26
(
1
), pp.
410
419
.10.1109/TPWRD.2010.2060214
5.
Bueno-Crespo
,
A.
,
García-Laencina
,
P. J.
, and
Sancho-Gómez
,
J. L.
,
2013
, “
Neural Architecture Design Based on Extreme Learning Machine
,”
Neural Networks
,
48
, pp.
19
24
.10.1016/j.neunet.2013.06.010
6.
Liang
,
N. Y.
,
Huang
,
G. B.
,
Saratchandran
,
P.
, and Sundararajan, N.,
2006
, “
A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks
,”
IEEE Trans. Neural Networks
,
17
(
6
), pp.
1411
1423
.10.1109/TNN.2006.880583
7.
Wong
,
P. K.
,
Yang
,
Z.
,
Vong
,
C. M.
, and Zhong, J.,
2014
, “
Real-Time Fault Diagnosis for Gas Turbine Generator Systems Using Extreme Learning Machine
,”
Neurocomputing
,
128
, pp.
249
257
.
8.
Zhang
,
Y.
, and
Zhang
,
P.
,
2011
, “
Optimization of Nonlinear Process Based on Sequential Extreme Learning Machine
,”
Chem. Eng. Sci.
,
66
(
20
), pp.
4702
4710
.10.1016/j.ces.2011.06.030
9.
Pan
,
Y.
,
Er
,
M. J.
,
Li
,
X.
, Yu, H., and Gouriveau, R.,
2014
, “
Machine Health Condition Prediction Via Online Dynamic Fuzzy Neural Networks
,”
Eng. Appl. Artif. Intell.
,
35
, pp.
105
113
.10.1016/j.engappai.2014.05.015
10.
Pan
,
F.
, and
Zhao
,
H.
,
2013
, “
Online Sequential Extreme Learning Machine Based Multilayer Perception With Output Self-Feedback for Time Series Prediction
,”
J. Shanghai Jiaotong Univ. (Sci.)
,
18
(
3
), pp.
366
375
.10.1007/s12204-013-1407-0
11.
Rong
,
H. J.
,
Huang
,
G. B.
,
Sundararajan
,
N.
, and Saratchandran, P.,
2009
, “
Online Sequential Fuzzy Extreme Learning Machine for Function Approximation and Classification Problems
,”
IEEE Trans. Syst., Man, Cybern., Part B
,
39
(
4
), pp.
1067
1072
.10.1109/TSMCB.2008.2010506
12.
Liu
,
Q.
,
Guo
,
Z.
, and
Wang
,
J.
,
2012
, “
A One-Layer Recurrent Neural Network for Constrained Pseudoconvex Optimization and Its Application for Dynamic Portfolio Optimization
,”
Neural Networks
,
26
, pp.
99
109
.10.1016/j.neunet.2011.09.001
13.
Alanis
,
A. Y.
,
Sanchez
,
E. N.
,
Loukianov
,
A. G.
, and Perez, M. A.,
2011
, “
Real-Time Recurrent Neural State Estimation
,”
IEEE Trans. Neural Networks
,
22
(
3
), pp.
497
505
.10.1109/TNN.2010.2103322
14.
Wen
,
Y.
,
He
,
L.
, and
Shi
,
P.
,
2012
, “
Face Recognition Using Difference Vector Plus KPCA
,”
Digital Signal Process.
,
22
(
1
), pp.
140
146
.10.1016/j.dsp.2011.08.004
15.
Jia
,
M.
,
Xu
,
H.
,
Liu
,
X.
, and Wang, N.,
2012
, “
The Optimization of the Kind and Parameters of Kernel Function in KPCA for Process Monitoring
,”
Comput. Chem. Eng.
,
46
, pp.
94
104
.10.1016/j.compchemeng.2012.06.023
16.
Zhao
,
L. J.
,
Yuan
,
D. C.
,
Chai
,
T. Y.
, and Tang, J.,
2011
, “
KPCA and ELM Ensemble Modeling of Wastewater Effluent Quality Indices
,”
Procedia Eng.
,
15
, pp.
5558
5562
.10.1016/j.proeng.2011.08.1031
17.
Zhou
,
J.
,
Guo
,
A.
,
Celler
,
B.
, and Su, S.,
2014
, “
Fault Detection and Identification Spanning Multiple Processes by Integrating PCA With Neural Network
,”
Appl. Soft Comput.
,
14
, pp.
4
11
.10.1016/j.asoc.2013.09.024
18.
Yilmaz
,
S.
, and
Oysal
,
Y.
,
2010
, “
Fuzzy Wavelet Neural Network Models for Prediction and Identification of Dynamical Systems
,”
IEEE Trans. Neural Networks
,
21
(
10
), pp.
1599
1609
.10.1109/TNN.2010.2066285
19.
Lim
,
J. S.
,
2013
, “
Partitioned Online Sequential Extreme Learning Machine for Large Ordered System Modeling
,”
Neurocomputing
,
102
(
15
), pp.
59
64
.10.1016/j.neucom.2011.12.049
20.
Guo
,
L.
,
Hao
,
J.
, and
Liu
,
M.
,
2014
, “
An Incremental Extreme Learning Machine for Online Sequential Learning Problems
,”
Neurocomputing
,
128
, pp.
50
58
.
21.
Subhashini
,
P. P. S.
, and
Prasad
,
V.
,
2013
, “
Recognition of Handwritten Digits Using RBF Neural Network
,”
Int. J. Res. Eng. Technol.
,
2
(
3
), pp.
393
397
.
22.
Chacko
,
B. P.
,
Krishnan
,
V. R. V.
,
Raju
,
G.
, and Anto, P. B.,
2012
, “
Handwritten Character Recognition Using Wavelet Energy and Extreme Learning Machine
,”
Int. J. Mach. Learn. Cybern.
,
3
(
2
), pp.
149
161
.10.1007/s13042-011-0049-5
23.
Ge
,
Z.
,
Yang
,
C.
, and
Song
,
Z.
,
2009
, “
Improved Kernel PCA-Based Monitoring Approach for Nonlinear Processes
,”
Chem. Eng. Sci.
,
64
(
9
), pp.
2245
2255
.10.1016/j.ces.2009.01.050
24.
Yina
,
S.
,
Ding
,
S. X.
,
Haghani
,
A.
, Hao, H., and Zhang, P.,
2012
, “
A Comparison Study of Basic Data-Driven Fault Diagnosis and Process Monitoring Methods on the Benchmark Tennessee Eastman Process
,”
J. Process Control
,
22
(
9
), pp.
1567
1581
.10.1016/j.jprocont.2012.06.009
25.
Eslamloueyan
,
R.
,
2011
, “
Designing a Hierarchical Neural Network Based on Fuzzy Clustering for Fault Diagnosis of the Tennessee–Eastman Process
,”
Appl. Soft Comput.
,
11
(
1
), pp.
1407
1415
.10.1016/j.asoc.2010.04.012
26.
Lau
,
C. K.
,
Ghosh
,
K.
,
Hussain
,
M. A.
, and Hassan, C. R. C.,
2013
, “
Fault Diagnosis of Tennessee Eastman Process With Multi-Scale PCA and ANFIS
,”
Chemom. Intell. Lab. Syst.
,
120
, pp.
1
14
.10.1016/j.chemolab.2012.10.005
27.
Rato
,
T. J.
, and
Reis
,
M. S.
,
2013
, “
Fault detection in the Tennessee Eastman Benchmark Process Using Dynamic Principal Components Analysis Based on Decorrelated Residuals
,”
Chemom. Intell. Lab. Syst.
,
125
, pp.
101
108
.10.1016/j.chemolab.2013.04.002
You do not currently have access to this content.