This paper investigates global uncertainty propagation and stochastic motion planning for the attitude kinematics of a rigid body. The Fokker–Planck equation on the special orthogonal group is numerically solved via noncommutative harmonic analysis to propagate a probability density function along flows of the attitude kinematics. Based on this, a stochastic optimal control problem is formulated to rotate a rigid body while avoiding obstacles within uncertain environments in an optimal fashion. The proposed intrinsic, geometric formulation does not require the common assumption that uncertainties are Gaussian or localized. It can be also applied to complex rotational maneuvers of a rigid body without singularities in a unified way. The desirable properties are illustrated by numerical examples.

References

1.
Donev
,
A.
,
Torquato
,
S.
, and
Stillinger
,
F.
,
2005
, “
Neighbor List Collision-Driven Molecular Dynamics Simulation for Nonspherical Hard Particles. I. Algorithmic Details
,”
J. Comput. Phys.
,
202
(2), pp.
737
764
.10.1016/j.jcp.2004.08.014
2.
LaValle
,
S.
,
2006
,
Planning Algorithms
,
Cambridge University Press
, Cambridge, UK.
3.
LaValle
,
S.
, and
Sharma
,
R.
,
1995
, “
A Framework for Motion Planning in Stochastic Environments: Modeling and Analysis
,” Proceedings of the
IEEE
Conference on Robotics and Automation, pp.
3057
3062
.10.1109/ROBOT.1995.525719
4.
LaValle
,
S.
, and
Sharma
,
R.
,
1995
, “
A Framework for Motion Planning in Stochastic Environments: Applications and Computational Issues
,” Proceedings of the
IEEE
Conference on Robotics and Automation, pp.
3063
3068
.10.1109/ROBOT.1995.525720
5.
Alterovitz
,
R.
,
Simeon
,
T.
, and
Goldberg
,
K.
,
2007
, “
The Stochastic Motion Roadmap: A Sampling Framework for Planning With Markov Motion Uncertainty
,”
Robotics: Science and Systems
,
MIT Press
, pp.
246
253
.
6.
Kalakrishnan
,
M.
,
Chitta
,
S.
,
Theodorou
,
E.
,
Paster
,
P.
, and
Schaal
,
S.
,
2011
, “
STOMP: Stochastic Trajectory Optimization for Motion Planning
,”
Proceedings of the IEEE Conference on Robotics and Automation
, pp.
4569
4574
.
7.
Bullo
,
F.
, and
Lewis
,
A.
,
2005
, “
Modeling, Analysis, and Design for Simple Mechanical Control Systems
,”
Geometric Control of Mechanical Systems (Texts in Applied Mathematics)
, Vol.
49
,
Springer-Verlag
,
New York
.
8.
Bhat
,
S.
, and
Bernstein
,
D.
,
2000
, “
A Topological Obstruction to Continuous Global Stabilization of Rotational Motion and the Unwinding Phenomenon
,”
Syst. Control Lett.
,
39
(
1
), pp.
66
73
.10.1016/S0167-6911(99)00090-0
9.
Ge
,
Q.
, and
Ravani
,
B.
,
1994
, “
Computer Aided Geometric Design of Motion Interpolants
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
756
762
.10.1115/1.2919447
10.
Srinivasan
,
L.
, and
Ge
,
Q.
,
1998
, “
Fine Tuning of Rational b-Spline Motions
,”
ASME J. Mech. Des.
,
120
(
1
), pp.
46
51
.10.1115/1.2826675
11.
Belta
,
C.
, and
Kumar
,
V.
,
2005
, “
Geometric Methods for Multi-Robot Optimal Motion Planning
,”
Handbook of Geometric Computing
,
Springer
, New York, pp.
679
706
.
12.
Park
,
W.
,
Liu
,
Y.
,
Zhou
,
Y.
,
Moses
,
M.
, and
Chirikjian
,
G.
,
2008
, “
Kinematic State Estimation and Motion Planning for Stochastic Nonholonomic System Using the Exponential Map
,”
Robotica
,
26
(4), pp.
419
434
.10.1017/S0263574708004475
13.
Sugiura
,
M.
,
1990
,
Unitary Representations and Harmonic Analysis
,
Kodansha
, Tokyo, Japan.
14.
Kirillov
,
A.
,
Soucek
,
V.
, and
Neretin
,
Y.
,
1994
,
Representation Theory and Noncommutative Harmonic Analysis I: Fundamental Concepts
,
Springer
, New York.
15.
Diaconis
,
P.
,
1988
,
Group Representations in Probability and Statistics
,
Institute of Mathematical Statistics
, Beachwood, OH.
16.
Emery
,
M.
,
1989
,
Stochastic Calculus in Manifolds
,
Springer
, New York.
17.
Lo
,
J. T. H.
, and
Eshleman
,
L. R.
,
1979
, “
Exponential Fourier Densities on SO(3) and Optimal Estimation and Detection for Rotational Processes
,”
SIAM J. Appl. Math.
,
36
(
1
), pp.
73
82
.10.1137/0136007
18.
Hendriks
,
H.
,
1990
, “
Nonparametric Estimation of a Probability Density on a Riemannian Manifold Using Fourier Expansions
,”
Ann. Stat.
,
18
(
2
), pp.
832
849
.10.1214/aos/1176347628
19.
Marsden
,
J.
, and
Ratiu
,
T.
,
1999
,
Introduction to Mechanics and Symmetry (Texts in Applied Mathematics)
, 2nd ed., Vol.
17
,
Springer-Verlag
, New York.
20.
Chirikjian
,
G.
,
2012
,
Stochastic Models, Information Theory, and Lie Groups
, Vol.
2
,
Birkhäuser
, New York.
21.
Chirikjian
,
G.
, and
Kyatkin
,
A.
,
2001
,
Engineering Applications of Noncommutative Harmonic Analysis
,
CRC Press
,
Boca Raton, FL
.
22.
Peter
,
F.
, and
Weyl
,
H.
,
1927
, “
Die Vollständigkeit der Primitiven Darstellungen Einer Geschlossenen Kontinuierlichen Gruppe
,”
Math. Ann.
,
97
(1), pp.
735
755
.10.1007/BF01447892
23.
Fisher
,
R.
,
1953
, “
Dispersion on a Sphere
,”
Proc. R. Soc. Lond. A.
,
217
, pp. 295–305.10.1098/rspa.1953.0064
24.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2008
, “
Global Symplectic Uncertainty Propagation on SO(3)
,” Proceedings of the
IEEE
Conference on Decision and Control, pp.
61
66
.10.1109/CDC.2008.4739058
25.
Censi
,
A.
,
Calisi
,
D.
,
Luca
,
A.
, and
Oriolo
,
G.
,
2008
, “
A Bayesian Framework for Optimal Motion Planning With Uncertainty
,” Proceedings of the
IEEE
Conference on Robotics and Automation, pp.
1798
1805
.10.1109/ROBOT.2008.4543469
26.
Lawrence
,
T.
,
Zhou
,
J.
, and
Tits
,
A.
,
1994
, “
User's Guide for CFSQP Version 2.0: A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality Constraints
,” Institute for Systems Research, University of Maryland, College Park, MD, Technical Report No. TR-94-16.
27.
Moses
,
H.
,
1966
, “
Irreducible Representations of the Rotation Group in Terms of the Axis and Angle of Rotation
,”
Ann. Phys.
,
37
(2), pp.
224
226
.10.1016/0003-4916(66)90040-6
You do not currently have access to this content.