A rising number of modern cranes are equipped with anti-sway control systems to facilitate crane operation, improve positioning accuracy, and increase turnover. Commonly, these industrial crane control systems require pendulum state information for feedback control. Therefore, a pendulum sway sensor (e.g., a rope-mounted gyroscope) and a signal processing algorithm are required. Such a signal processing algorithm needs to filter out disturbances from both the sensor and the crane, e.g., signal noise and string oscillations of a long rope. Typically, these signal processing algorithms require the knowledge of the acceleration of the rope suspension point. This acceleration signal is often estimated from drive models. When drive models are uncertain, the pendulum state estimation accuracy suffers from drive model inaccuracy. In this contribution, an improved estimation algorithm is presented which estimates the load position without relying on the rope suspension point acceleration. The developed Extended Kalman Filter is implemented on a Liebherr mobile harbor crane and its effectiveness is validated with multiple test rides and GPS load position reference measurements.

References

1.
Vaughan
,
J.
,
Jurek
,
P.
, and
Singhose
,
W.
,
2011
, “
Reducing Overshoot in Human-Operated Flexible Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
1
), p.
011010
.10.1115/1.4002074
2.
Zameroski
,
D.
,
Starr
,
G.
,
Wood
,
J.
, and
Lumia
,
R.
,
2008
, “
Rapid Swing-Free Transport of Nonlinear Payloads Using Dynamic Programming
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
4
), p.
041001
.10.1115/1.2936384
3.
Utz
,
T.
,
Hagenmeyer
,
V.
,
Mahn
,
B.
, and
Zeitz
,
M.
,
2006
, “
Nonlinear Model Predictive and Flatness-Based Two-Degree-Of-Freedom Control Design: A Comparative Evaluation in View of Industrial Application
,”
IEEE International Conference on Control Applications
, pp.
217
223
.
4.
Sorensen
,
K. L.
,
Singhose
,
W.
, and
Dickerson
,
S.
,
2007
, “
A Controller Enabling Precise Positioning and Sway Reduction in Bridge and Gantry Cranes
,”
Control Eng. Pract.
,
15
(
7
), pp.
825
837
.10.1016/j.conengprac.2006.03.005
5.
Lee
,
G.
,
Kim
,
H.-H.
,
Lee
,
C.-J.
,
Ham
,
S.-I.
,
Yun
,
S.-H.
,
Cho
,
H.
,
Kim
,
B. K.
,
Kim
,
G. T.
, and
Kim
,
K.
,
2009
, “
A Laser-Technology-Based Lifting-Path Tracking System for a Robotic Tower Crane
,”
Autom. Constr.
,
18
(
7
), pp.
865
874
.10.1016/j.autcon.2009.03.011
6.
Wiebking
,
L.
,
Reindl
,
L.
,
Christmann
,
M.
,
Mastela
,
D.
, and
Vossie
,
M.
,
2004
, “
Local Positioning Radar
,”
Proceedings of the 1st Workshop on Positioning, Navigation and Communication
.
7.
Uchiyama
,
N.
,
2009
, “
Robust Control of Rotary Crane by Partial-State Feedback With Integrator
,”
Mechatronics
,
19
(
8
), pp.
1294
1302
.10.1016/j.mechatronics.2009.08.007
8.
Terashima
,
K.
,
Shen
,
Y.
, and
Yano
,
K.
,
2007
, “
Modeling and Optimal Control of a Rotary crane Using the Straight Transfer Transformation Method
,”
Control Eng. Pract.
,
15
(
9
), pp.
1179
1192
.10.1016/j.conengprac.2007.02.008
9.
Masoud
,
Z. N.
,
Nayfeh
,
A. H.
, and
Nayfeh
,
N. A.
,
2005
, “
Sway Reduction on Quay-Side Container Cranes Using Delayed Feedback Controller: Simulations and Experiments
,”
J. Vib. Control
,
11
(
8
), pp.
1103
1122
.10.1177/1077546305056300
10.
Masoud
,
Z. N.
,
2007
, “
Oscillation Control of Quay-Side Container Cranes Using Cable-Length Manipulation
,”
ASME J. Dyn. Syst., Meas., Control
,
129
(
2
), pp.
224
228
.10.1115/1.2432362
11.
Athanasios
,
T.
,
2002
, “
Design of an Electric Power Controller for the Control of a Crane-Bridge, Used to Download Containers, With Fuzzy Logic
,”
Proceedings of the 2nd Hellenic Conference on AI
, pp.
487
498
.
12.
Kim
,
Y.-S.
,
Hong
,
K.-S.
, and
Sul
,
S.-K.
,
2004
, “
Anti-Sway Control of Container Cranes: Inclinometer, Observer, and State Feedback
,”
Int. J. Control, Autom. Syst.
,
2
(
4
), pp.
435
449
. Available at: http://www.ijcas.com/admin/paper/files/IJCAS_v2_n4_pp435-449.pdf
13.
Schaper
,
U.
,
Sagert
,
C.
,
Sawodny
,
O.
, and
Schneider
,
K.
,
2011
, “
A Load Position Observer for Cranes With Gyroscope Measurements
,”
Proceedings of the 18th IFAC World Congress
, pp.
3563
3568
.
14.
Eker
,
J.
, and
Åstöm
,
K. J.
,
1996
, “
A Nonlinear Observer for the Inverted Pendulum
,”
Proceedings of the 1996 IEEE International Conference on Control Applications
, pp.
332
337
.
15.
Neupert
,
J.
,
Heinze
,
T.
,
Sawodny
,
O.
, and
Schneider
,
K.
,
2009
, “
Observer Design for Boom Cranes With Double-Pendulum Effect
,”
Proceedings of the 18th IEEE International Conference on Control Applications
, pp.
1545
1550
.
16.
Neupert
,
J.
,
Arnold
,
E.
,
Schneider
,
K.
, and
Sawodny
,
O.
,
2010
, “
Tracking and Anti-Sway Control for Boom Cranes
,”
Control Eng. Pract.
,
18
(
1
), pp.
31
44
.10.1016/j.conengprac.2009.08.003
17.
Giua
,
A.
,
Seatzu
,
C.
, and
Usai
,
G.
,
1999
, “
Observer-Controller Design for Cranes Via Lyapunov Equivalence
,”
Automatica
,
35
(
4
), pp.
669
678
.10.1016/S0005-1098(98)00204-0
18.
Giua
,
A.
,
Sanna
,
M.
, and
Seatzu
,
C.
,
2001
, “
Observer-Controller Design for Three Dimensional Overhead Cranes Using Time-Scaling
,”
Math. Comput. Model. Dyn. Syst.
,
7
(
1
), pp.
77
107
.10.1076/mcmd.7.1.77.3634
19.
Kim
,
Y.-S.
,
Yoshihara
,
H.
,
Fujioka
,
N.
,
Kasahara
,
H.
,
Shim
,
H.
, and
Sul
,
S.-K.
,
2003
, “
A New Vision-Sensorless Anti-Sway Control System for Container Cranes
,”
Conference Record of the 38th Industry Applications Conference
, pp.
262
269
.
20.
Wang
,
Y.
,
Lin
,
Z.
, and
Li
,
M.
,
2010
, “
Sampled-Data Observer for Inverted-Pendulum With Large Sampling Interval
,”
Second International Conference on Computer Modeling and Simulation
, pp.
59
62
.
21.
Sano
,
H.
,
Ohishi
,
K.
,
Kaneko
,
T.
, and
Mine
,
H.
,
2010
, “
Anti-Sway Crane Control Based on Dual State Observer With Sensor-Delay Correction
,”
11th IEEE International Workshop on Advanced Motion Control
, pp.
679
684
.
22.
Sakawa
,
Y.
, and
Nakazumi
,
A.
,
1985
, “
Modeling and Control of a Rotary Crane
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
3
), pp.
200
206
.10.1115/1.3140721
23.
Hahn
,
H.
,
2002
,
Rigid Body Dynamics of Mechanisms
,
Springer
,
New York
.
24.
Titterton
,
D.
, and
Weston
,
J.
,
2004
,
Strapdown Inertial Navigation Technology
, 2 ed.,
IEE Radar, Sonar, Navigation and Avionics Series, The Institution of Engineering and Technology
.
25.
Zhu
,
H.
, and
Sugie
,
T.
,
2013
, “
Velocity Estimation of Motion Systems Based on low-Resolution Encoders
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
1
), p.
011006
.10.1115/1.4007065
26.
Tan
,
K. K.
, and
Tang
,
K.-Z.
,
2005
, “
Adaptive Online Correction and Interpolation of Quadrature Encoder Signals Using Radial Basis Functions
,”
IEEE Trans. Control Syst. Technol.
,
13
(
3
), pp.
370
377
.10.1109/TCST.2004.841648
27.
Sawodny
,
O.
,
Aschemann
,
H.
,
Kümpel
,
J.
,
Tarin
,
C.
, and
Schneider
,
K.
,
2002
, “
Anti-Sway Control for Boom Cranes
,”
Proceedings of the 2002 American Control Conference
, pp.
244
249
.
28.
Grewal
,
M.
, and
Andrews
,
A.
,
2010
, “
How Good is Your Gyro?
,”
IEEE Control Syst. Mag.
,
30
(
1
), pp.
12
86
.10.1109/MCS.2009.935122
29.
Dubbel
,
H.
,
1994
,
Dubbel—Handbook of Mechanical Engineering
,
Springer
,
New York
.
30.
Welch
,
G.
, and
Bishop
,
G.
,
2006
,
An Introduction to the Kalman Filter, TR 05-041
,
Department of Computer Science, University of North Carolina at Chapel Hill
, Chapel Hill, NC.
You do not currently have access to this content.