This paper presets three degrees of freedom (DOF) piezoelectric micropositioning stage. The stage is composed of a stack of piezodisk bender actuators actuated in such a way to prevent the end-effector from rotating; this way the end-effector can only translate along the x, y, and z axes. Thanks to its snake-like configuration, the system is capable of large displacements (of the order of 50 μm) with low driving voltages (of the order of 100 V). Several lumped-mass static and dynamic models of the device have been implemented. Static experimental results, which are in agreement with simulation data, confirmed the performances of the device. A dynamic model showed the natural frequencies of the mechanism. Also dynamic tests have been conducted in order to validate the dynamic model.

References

1.
Eliahou-Niv
,
S.
,
2005
, “
Design, Analysis and Fabrication of a New MEMS Scanning Device Actuator
,”
Appl. Surf. Sci.
,
248
(
1
), pp.
503
508
.10.1016/j.apsusc.2005.03.035
2.
Inoue
,
K.
,
Tanikawa
,
T.
, and
Arai
,
T.
,
2008
, “
Micro-Manipulation System With a Two-Fingered Micro-Hand and Its Potential Application in Bioscience
,”
J. Biotechnol.
,
133
(
2
), pp.
219
224
.10.1016/j.jbiotec.2007.08.027
3.
Moreyra
,
M.
,
Marbot
,
P. H.
,
Venema
,
S.
, and
Hannaford
,
B.
,
1995
, “
A 5-Axis Mini Direct Drive Robot for Teleoperation and Biotechnology
,”
Proceedings of Intelligent Robots and Systems
,
V.
Graefe
, ed.,
Munich, Germany
, pp.
445
462
.
4.
Fahlbusch
,
S.
,
Mazerolle
,
S.
,
Breguet
,
J. M.
,
Steinecker
,
A.
,
Agnus
,
J.
,
Pacrez
,
R.
, and
Michler
,
J.
,
2005
, “
Nanomanipulation in a Scanning Electron Microscope
,”
J. Mater. Process. Technol.
,
167
(
2
), pp.
371
382
.10.1016/j.jmatprotec.2005.06.022
5.
Mukhopadhyay
,
D.
,
Dong
,
J.
,
Pengwang
,
E.
, and
Ferreira
,
P.
,
2008
, “
A SOI-MEMS-Based 3-DOF Planar Parallel-Kinematics Nanopositioning Stage
,”
Sens. Actuators, A
,
147
(
1
), pp.
340
351
.10.1016/j.sna.2008.04.018
6.
Polit
,
S.
, and
Dong
,
J.
,
2009
, “
Design of High-Bandwidth High-Precision Flexure-Based Nanopositioning Modules
,”
J. Manuf. Syst.
,
28
(
2
), pp.
71
77
.10.1016/j.jmsy.2010.01.001
7.
Zhong
,
Z. W.
, and
Yeong
,
C. K.
,
2006
, “
Development of a Gripper Using SMA Wire
,”
Sens. Actuators, A
,
126
(
2
), pp.
375
381
.10.1016/j.sna.2005.10.017
8.
Gédouin
,
P. A.
,
Delaleau
,
E.
,
Bourgeot
,
J. M.
,
Join
,
C.
,
Chirani
,
S. A.
, and
Calloch
,
S.
,
2011
, “
Experimental Comparison of Classical PID and Model-Free Control: Position Control of a Shape Memory Alloy Active Spring
,”
Control Eng. Pract.
,
19
(
5
), pp.
433
441
.10.1016/j.conengprac.2011.01.005
9.
Lee
,
S. Q.
, and
Gweon
,
D. G.
,
2000
, “
A New 3-DOF Z-Tilts Micropositioning System Using Electromagnetic Actuators and Air Bearings
,”
Precis. Eng.
,
24
(
1
), pp.
24
31
.10.1016/S0141-6359(99)00022-7
10.
Lei
,
J.
,
Luo
,
X.
,
Chen
X.
, and
Yan
,
T.
,
2010
, “
Modeling and Analysis of a 3-DOF Lorentz-Force-Driven Planar Motion Stage for Nanopositioning
,”
Mechatronics
,
20
(
5
), pp.
553
565
.10.1016/j.mechatronics.2010.05.001
11.
Millet
,
O.
,
Bernardoni
,
P.
,
Régnier
,
S.
,
Bidaud
,
P.
,
Tsitsiris
,
E.
,
Collard
,
D.
, and
Buchaillot
,
L.
,
2004
, “
Electrostatic Actuated Micro Gripper Using an Amplification Mechanism
,”
Sens. Actuators, A
,
114
(
2
), pp.
371
378
.10.1016/j.sna.2003.11.004
12.
Erismis
,
M. A.
,
Neves
,
H. P.
,
Moor
,
P. D.
,
Hoof
,
C. V.
, and
Puers
,
R.
,
2009
, “
Low Voltage Electrostatic Inchworm Actuators in Aqueous Environments
,”
Proc. Chem.
,
1
(
1
), pp.
686
689
.10.1016/j.proche.2009.07.171
13.
Claeyssen
,
F.
,
Letty
,
R. L.
, and
Barillot
,
F.
,
2007
, “
Amplified Piezoelectric Actuators: Static and Dynamic Applications
,”
Ferroelectrics
,
351
(
3
), pp.
1
12
.10.1080/00150190701351865
14.
Nah
,
S. K.
, and
Zhong
,
Z. W.
,
2007
, “
A Microgripper Using Piezoelectric Actuation for Micro-Object Manipulation
,”
Sens. Actuators, A
,
133
(
1
), pp.
218
224
.10.1016/j.sna.2006.03.014
15.
Yanga
,
R.
,
Jouaneh
,
M.
, and
Schweizerb
,
R.
,
1996
, “
Design and Characterization of a Low-Profile Micropositioning Stage
,”
Precis. Eng.
,
18
(
1
), pp.
20
29
.10.1016/0141-6359(95)00032-1
16.
Castaneda
,
A.
,
Apatiga
,
L. R.
,
Velazquez
,
R.
, and
Castano
,
V. M.
,
2001
, “
Micropositioning Device for Automatic Alignment of Substrates for Industrial-Scale Thin Films Deposition
,”
Assem. Autom.
,
21
(
4
), pp.
336
340
.10.1108/EUM0000000006015
17.
Rubio
,
J. C. C.
,
Dubuch
,
J. G.
, and
Porto
,
A. V.
,
1997
, “
Micropositioning Device Using Solid State Actuators for Diamond Turning Machines: A Preliminary Experiment
,”
Proceedings of SPIE—the International Society for Optical Engineering
,
Janet M.
Sater
, ed.,
San Diego, CA
, Vol.
3044
, pp.
317
326
.
18.
Smith
,
R.
,
Gwo
,
S.
, and
Shih
,
C. K.
,
1994
, “
New High-Resolution Two-Dimensional Micropositioning Device for Scanning Probe Microscopy Applications
,”
Rev. Sci. Instrum.
,
65
(
10
), pp.
3216
3219
.10.1063/1.1144552
You do not currently have access to this content.