Modeling, identification (experimental modeling), and design of dynamic systems and the associated problem of controller design are common problems in the field of mechatronics. A typical mechatronic problem entails finding the best topology as well as parameter values of the desired solution. In view of dynamic interactions in a mechatronic system, which involves more than one domain, it is desirable to use concurrent and integrated methodology in the solution. The powerful search ability of genetic programming (GP) along with the domain independence and the open architecture of bond graph (BG) modeling can be integrated to develop an evolutionary mechatronic tool for identification of a complex mechatronic system. This paper extends this integrated approach to nonlinear mechatronic problems and develops a software tool for this purpose. It is illustrated how the developed technique and the corresponding software tool can be used in the automated synthesis and identification of a nonlinear mechatronic system. The performance of the software tool is validated by applying it to a nonlinear electrohydraulic manipulator, which falls into the class of multidomain systems. The results obtained from the application are quite encouraging, and form a rationale for the extension of the tool for concurrent and optimal design of mechatronic systems.

References

1.
de Silva
,
C. W.
,
2005
,
Mechatronics—An Integrated Approach
,
CRC Press, Taylor & Francis
,
Boca Raton, FL
.
2.
Behbahani
,
S.
, and
de Silva
,
C. W.
,
2007
, “
Mechatronic Modeling and Design
,”
Mechatronic Systems—Devices, Design, Control, Operation, and Monitoring
,
CRC Press, Taylor & Francis
,
Boca Raton, FL
.
3.
de Silva
,
C. W.
, and
Behbahani
,
S.
, “
A Design Paradigm for Mechatronic Systems
,”
Mechatronics
(in press). Available at http://www.sciencedirect.com/science/journal/aip/09574158
4.
Behbahani
,
S.
, and
de Silva
,
C. W.
,
2008
, “
System-Based and Concurrent Design of a Smart Mechatronic System Using the Concept of Mechatronic Design Quotient (MDQ)
,”
IEEE/ASME Trans. Mechatron.
,
13
(
1
), pp.
14
21
.10.1109/TMECH.2007.915058
5.
Behbahani
,
S.
, and
de Silva
,
C. W.
,
2007
, “
Mechatronic Design Quotient (MDQ) as the Basis of a New Multi-Criteria Mechatronic Design Methodology
,”
IEEE/ASME Trans. Mechatron.
,
12
(
2
), pp.
227
232
.10.1109/TMECH.2007.892822
6.
de Silva
,
C. W.
,
2003
, “
Sensing and Information Acquisition for Intelligent Mechatronic Systems
,”
Proceedings of the Symposium on Information Transition, Chinese Academy of Science
,
Hefei, China
, pp.
9
18
.
7.
Li
,
Q.
,
Zhang
,
W. J.
, and
Chen
,
L.
,
2001
, “
Design for Control—A concurrent Engineering Approach for Mechatronic System Design
,”
IEEE/ASME Trans. Mechatron.
,
6
(
2
), pp.
161
169
.10.1109/3516.928731
8.
Behbahani
,
S.
, and
de Silva
,
C. W.
,
2013
, “
Mechatronic Design Evolution Using Bond Graphs and Hybrid Genetic Algorithm With Genetic Programming
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
190
199
.10.1109/TMECH.2011.2165958
9.
Behbahani
,
S.
, and
de Silva
,
C. W.
, “
Niching Genetic Scheme With Bond Graphs for Topology and Parameter Optimization of a Mechatronic System
,”
IEEE/ASME Trans. Mechatron.
(in press). Available at http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6389779&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6389779
10.
Seo
,
K.
,
Fan
,
Z.
,
Hu
,
J.
,
Goodman
,
E. D.
, and
Rosenberg
,
R. C.
,
2003
, “
Toward a Unified and Automated Design Methodology for Multi Domain Dynamic Systems Using Bond Graphs and Genetic Programming
,”
Mechatronics
,
13
(
8–9
), pp.
851
885
.10.1016/S0957-4158(03)00006-0
11.
Fan
,
Z.
,
Seo
,
K.
,
Hu
,
J.
,
Goodman
,
E. D.
, and
Rosenberg
,
R. C.
,
2004
, “
A Novel Evolutionary Engineering Design Approach for Mixed-Domain Systems
,”
Eng. Optim.
,
36
(
2
), pp.
127
147
.10.1080/03052150410001647957
12.
Koza.
J. R.
,
Bennett
,
F. H.
,
Andre
,
D.
, and
Keane
,
M. A.
,
2000
, “
Synthesis of Topology and Sizing of Analog Electrical Circuits by Means of Genetic Programming
,”
Comput. Methods Appl. Mech. Eng.
,
186
(
2
), pp.
459
482
.10.1016/S0045-7825(99)00397-7
13.
Kumon
,
T.
,
Iwasaki
,
M.
,
Suzuki
,
T.
,
Hashiyama
,
T.
,
Matsui
,
N.
, and
Okuma
,
S.
,
2000
, “
Nonlinear System Identification Using Genetic Algorithms
,”
26th Annual Conference of the IEEE, Industrial Electronics Society
,
Nagoya, Japan
,
4
, pp.
2485
2491
.
14.
Iwasaki
,
M.
, and
Mutsui
,
N.
,
2000
, “
Evolutionary Identification Algorithm for Unknown Structured Mechatronic Systems Using GA
,”
26th Annual Conference of the IEEE, Industrial Electronics Society
,
Nagoya, Japan
,
4
, pp.
2492
2496
.
15.
Iwasaki
,
M.
,
Miwa
,
M.
, and
Mutsui
,
N.
,
2005
, “
GA Based Evolutionary Identification Algorithm for Unknown Structured Mechatronic Systems
,”
IEEE Trans. Ind. Electron.
,
52
(
1
), pp.
300
305
.10.1109/TIE.2004.841075
16.
Koza
,
J. R.
,
Bennett
,
F. H.
,
Andre
,
D.
, and
Keane
,
M. A.
,
1999
,
Genetic Programming III, Darwinian Invention and Problem Solving
,
Morgan Kaufman Publication
,
San Francisco, CA
.
17.
Wang
,
J.
,
Fan
,
Z.
,
Terpenny
,
J. P.
, and
Goodman
E. D.
,
2005
, “
Knowledge Interaction With Genetic Programming in Mechatronic Systems Design Using Bond Graphs
,”
IEEE Trans. Syst., Man, Cybern., Part C: Appl. Rev.
,
35
(
2
), pp.
172
182
.10.1109/TSMCC.2004.841915
20.
Granda
,
J. J.
,
2002
, “
The Role of Bond Graph Modeling and Simulation in Mechatronics Systems
,”
Mechatronics
,
12
(
9–10
), pp.
1271
1295
.10.1016/S0957-4158(02)00029-6
21.
Karnopp
,
D.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2000
,
System Dynamics: Modeling and Simulation of Mechatronic Systems
,
Wiley
,
New York
.
22.
Tafazoli
,
S.
,
de Silva
,
C. W.
, and
Lawrence
,
P. D.
,
1998
, “
Tracking Control of an Electrohydraulic Manipulator in the Presence of Friction
,”
IEEE Trans. Control Syst. Technol
,
6
(
3
), pp.
401
411
.10.1109/87.668040
23.
Owen
,
W. S.
,
Croft
,
E. A.
, and
McFarlane
,
J. R.
, “
Reducing Stick-Slip Friction in Hydraulic Actuators
,” Available At http://batman.mech.ubc.ca/∼ial/publication/conferences/AIM_Bill.pdf
24.
Olsson
,
H.
,
Astrom
,
K. J.
,
de Wit
,
C. C.
,
Gafvert
,
M.
, and
Lischinsky
,
P.
, 1998, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
, pp.
176
195
.
25.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
26.
Berger
,
E. J.
,
2002
, “
Friction Modeling for Dynamic System Simulation
,”
ASME Appl. Mech. Rev.
,
55
(
6
), pp.
535
577
.10.1115/1.1501080
27.
de Silva
,
C. W.
, and
Wickramarachchi
,
N.
,
1997
, “
An Innovative Machine for Automated Cutting of Fish
,”
IEEE/ASME Trans. Mechatron.
,
2
(
2
), pp.
86
98
.10.1109/3516.588627
28.
Cellier
,
F. E.
, and
McBride
,
R. T.
, “
Object-Oriented Modeling of Complex Physical Systems Using the Dymola Bond Graph Library
,” Available At http://www.inf.ethz.ch/personal/fcellier/Pubs/BG/icbgm_03_bglib.pdf
29.
Viersma
,
T. J.
,
1980
,
Analysis, Synthesis and Design of Hydraulic Servo Systems and Pipelines
,
Elsevier Scientific Publishing Company
,
Amsterdam-Oxford-New York
.
You do not currently have access to this content.