The authors present a model-based analysis of a position-velocity-acceleration-controlled pneumatic actuator that indicates that supplementing the pneumatic actuator with mechanical damping can significantly increase the gain margin, tracking accuracy, and disturbance rejection of a closed-loop-controlled pneumatic servoactuator. In order to validate the model-based analysis and purported performance and stability benefits provided by supplemental damping, experiments were performed on a single-degree-of-freedom pneumatic servosystem. Measurements conducted on the experimental setup, which validate the respective improvements in stability margin, tracking accuracy, and disturbance rejection, are described.

1.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air—II
,”
Trans. ASME
0097-6822,
78
, pp.
243
249
.
2.
Mannetje
,
J. J.
, 1981, “
Pneumatic Servo Design Method Improves System Bandwidth Twenty-Fold
,”
Control Eng.
0010-8049,
28
(
6
), pp.
79
83
.
3.
Liu
,
S.
, and
Bobrow
,
J. E.
, 1988, “
An Analysis of a Pneumatic Servo System and Its Application to a Computer-Controlled Robot
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
110
(
3
), pp.
228
235
.
4.
Kimura
,
T.
,
Hara
,
S.
,
Fujita
,
T.
, and
Kagawa
,
T.
, 1997, “
Feedback Linearization for Pneumatic Actuator Systems With Static Friction
,”
Control Eng. Pract.
0967-0661,
5
(
10
), pp.
1385
1394
.
5.
Surgenor
,
B. W.
, and
Vaughan
,
N. D.
, 1997, “
Continuous Sliding Mode Control of a Pneumatic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
(
3
), pp.
578
581
.
6.
Bobrow
,
J.
, and
McDonell
,
B.
, 1998, “
Modeling, Identification, and Control of a Pneumatically Actuated, Force Controllable Robot
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
5
), pp.
732
742
.
7.
Wang
,
J.
,
Pu
,
J.
, and
Moore
,
P.
, 1999, “
A Practical Control Strategy for Servo-Pneumatic Actuator Systems
,”
Control Eng. Pract.
0967-0661,
7
, pp.
1483
1488
.
8.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part II—Nonlinear Control Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
426
434
.
9.
Wang
,
J.
,
Wang
,
D. J. D.
,
Moore
,
P. R.
, and
Pu
,
J.
, 2001, “
Modelling Study, Analysis and Robust Servocontrol of Pneumatic Cylinder Actuator Systems
,”
IEE Proc.: Control Theory Appl.
1350-2379,
148
(
1
), pp.
35
42
.
10.
Al-Dakkan
,
K.
,
Barth
,
E. J.
, and
Goldfarb
,
M.
, 2006, “
Dynamic Constraint Based Energy Saving Control of Pneumatic Servo Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
(
3
), pp.
655
662
.
11.
Bone
,
G. M.
, and
Ning
,
S.
, 2007, “
Experimental Comparison of Position Tracking Control Algorithms for Pneumatic Cylinder Actuators
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
12
(
5
), pp.
557
561
.
12.
Shen
,
X.
, and
Goldfarb
,
M.
, 2007, “
Energy Saving in Pneumatic Servo Control Utilizing Interchamber Cross-Flow
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
129
(
3
), pp.
303
310
.
13.
Rao
,
Z.
, and
Bone
,
G. M.
, 2008, “
Nonlinear Modeling and Control of Servo Pneumatic Actuators
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
16
(
3
), pp.
562
569
.
14.
Vaughan
,
D. R.
, 1965, “
Hot-Gas Actuators: Some Limits on the Response Speed
,”
ASME J. Basic Eng.
0021-9223,
87
(
1
), pp.
113
119
.
15.
Huff
,
J. F.
, 1965, “
Precision Motion Control Device
,” U.S. Patent No. 3,176,801.
16.
Crosby
,
M. J.
, 1985, “
Hydropneumatic Drive Apparatus
,” U.S. Patent No. 4,528,894.
17.
McCormick
,
J. F.
, 1995, “
High Speed Pneumatic Servo Actuator With Hydraulic Damper
,” U.S. Patent No. 5,458,047.
18.
Klute
,
G. K.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
, 1999, “
McKibben Artificial Muscles: Pneumatic Actuators With Biomechanical Intelligence
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, pp.
221
226
.
You do not currently have access to this content.