This paper presents a novel fault diagnosis approach in satellite systems for identifying time-varying thruster faults. To overcome the difficulty in identifying time-varying thruster faults by adaptive observers, an iterative learning observer (ILO) is designed to achieve estimation of time-varying faults. The proposed ILO-based fault-identification strategy uses a learning mechanism to perform fault estimation instead of using integrators that are commonly used in classical adaptive observers. The stability of estimation-error dynamics is established and proved. An illustrative example clearly shows that time-varying thruster faults can be accurately identified.

1.
Venkateswaran
,
N.
,
Siva
,
N. S.
, and
Goel
,
P. S.
, 2002, “
Analytical Redundancy Based Fault Detection of Gyroscopes in Spacecraft Applications
,”
Acta Astronaut.
0094-5765,
50
(
9
), pp.
535
545
.
2.
Boskovic
,
J.
,
Li
,
S.-M.
, and
Mehra
,
R. K.
, 2000, “
Fault-Tolerant Control of Spacecraft in the Presence of Sensor Bias
,”
Proc. of Amer. Contr. Conf.
,
Chicago
,
Omnipress
,
Madison, WI
, pp.
1205
1209
.
3.
Lee
,
A. Y.
, and
Brown
,
M.
, 1998, “
A Model-Based Thruster Leakage Monitor for the Cassini Spacecraft
,”
Proc. of Amer. Contr. Conf.
,
Philadelphia
,
Omnipress
,
Madison, WI
, pp.
902
904
.
4.
Noura
,
H.
,
Sauter
,
D.
,
Hamelin
,
F.
, and
Theilliol
,
D.
, 2000, “
Fault-Tolerant Control in Dynamic Systems: Application to a Winding Machine
,”
IEEE Control Syst. Mag.
0272-1708
20
, pp.
33
49
.
5.
Chen
,
W.
, and
Saif
,
M.
, 2000, “
A Variable Structure Adaptive Observer Approach for Actuator Fault Detection and Diagnosis in Uncertain Nonlinear Systems
,”
Proc. of Amer. Contr. Conf.
,
Chicago
, pp.
2674
2678
.
6.
Wang
,
H.
, and
Daley
,
S.
, 1996, “
Actuator Fault Diagnosis: An Adaptive Observer-Based Technique
,”
IEEE Trans. Autom. Control
0018-9286,
41
, pp.
1073
1078
.
7.
Yang
,
H.
, and
Saif
,
M.
, 1997, “
Fault Detection and Isolation for a Class of Nonlinear Systems Using an Adaptive Observer
,”
Proc. of Amer. Contr. Conf.
,
Albuquerque
,
Omnipress
,
Madison, WI
, pp.
463
467
.
8.
Middleton
,
R. H.
, and
Goodwin
,
G.
, 1988, “
Adaptive Control of Time-Varying Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
33
(
2
), pp.
150
155
.
9.
Chen
,
W.
, and
Saif
,
M.
, 2003, “
Fault Detection and Accommodation in Nonlinear Time-Delay Systems
,”
Proc. of American Control Conference
,
Omnipress
,
Madison, WI
, June 4–6, Vol.
5
, pp.
4255
4260
.
10.
Ma
,
L.
,
Wang
,
J.
, and
Wang
,
S.
, 2004, “
Robust Fault Detection Using Iterative Learning Observer for Nonlinear Systems
,”
Proc. of Fifth World Congress on Intelligent Control and Automation
, Hangzhou, China, June 15–19, Vol.
2
, pp.
1724
1726
.
11.
Show
,
L.-L.
,
Juang
,
J.-C.
, and
Jan
,
Y.-W.
, 2003, “
An LMI-Based Nonlinear Attitude Control Approach
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
11
(
1
), pp.
73
83
.
12.
Chen
,
W.
, and
Saif
,
M.
, 2002, “
Robust Fault Diagnosis in Time-Delay Nonlinear Systems via an ILO With Application to Automotive Engine
,”
IFAC Congress
, Barcelona.
13.
Noura
,
H.
,
Theilliol
,
D.
, and
Sauter
,
D.
, 2000, “
Actuator Fault-Tolerant Control Design: Demonstration on a Three-Tank-System
,”
Int. J. Syst. Sci.
0020-7721,
31
(
9
), pp.
1143
1155
.
14.
Boskovic
,
J.
,
Li
,
S.-M.
, and
Mehra
,
R. K.
, 1999, “
Intelligent Control of Spacecraft in the Presence of Actuator Failures
,”
Proceedings of 38th IEEE Decision and Contr. Conf.
, Phoenix, Arizona, pp.
4472
4477
.
15.
Narendra
,
K. S.
,
Khalifa
,
I. H.
, and
Annaswamy
,
A. M.
, 1985, “
Error Models for Stable Hybrid Adaptive Systems
,”
IEEE Trans. Autom. Control
0018-9286,
30
(
4
), pp.
339
347
.
16.
Yan
,
X. G.
,
Wang
,
Jian-Jun
,
Lu
,
Xing-Ya
, and
Zhang
,
Si-Ying
, 1998, “
Decentralized Output Feedback Robust Stabilization for a Class of Nonlinear Interconnected Systems With Similarity
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
2
), pp.
294
299
.
17.
Khalil
,
H. K.
, 1996,
Nonlinear Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.