The problem of generating an optimal feed-rate trajectory has received a significant amount of attention in both the robotics and machining literature. The typical objective is to generate a minimum-time trajectory subject to constraints such as system limitations on actuator torques and accelerations. However, developing a computationally efficient solution to this problem while simultaneously guaranteeing optimality has proven challenging. The common constructive methods and optimal control approaches are computationally intensive. Heuristic methods have been proposed that reduce the computational burden but produce only near-optimal solutions with no guarantees. A two-pass feedrate optimization algorithm has been proposed previously in the literature by multiple researchers. However, no proof of optimality of the resulting solution has been provided. In this paper, the two-pass feed-rate optimization algorithm is generalized and a proof of global optimality is provided. The generalized algorithm maintains computational efficiency, and supports the incorporation of a variety of state-dependent constraints. By carefully arranging the local search steps, a globally optimal solution is achieved. Singularities, or critical points on the trajectory, which are difficult to deal with in optimal control approaches, are treated in a natural way in the generalized algorithm. A detailed proof is provided to show that the algorithm does generate a globally optimal solution under various types of constraints. Several examples are presented to illustrate the application of the algorithm.

1.
Bobrow
,
J. E.
,
Dubowsky
,
S.
, and
Gibson
,
J.
, 1985, “
Time-Optimal Control of Robotic Manipulators Along Specified Paths
,”
Int. J. Robot. Res.
0278-3649,
4
, pp.
3
17
.
2.
Shin
,
K.
, and
McKay
,
N.
, 1985, “
Minimum-Time Control of Robotic Manipulators with Geometric Path Constraints
,”
IEEE Trans. Autom. Control
0018-9286,
30
, pp.
531
541
.
3.
Pfeiffer
,
F.
, and
Johanni
,
R.
, 1987, “
A Concept for Manipulator Trajectory Planning
,”
IEEE J. Rob. Autom.
0882-4967,
3
, pp.
115
123
.
4.
Slotine
,
J. E.
, and
Yang
,
H. S.
, 1989, “
Improving the Efficiency of Time-Optimal Path-Following Algorithms
,”
IEEE Trans. Rob. Autom.
1042-296X,
5
, pp.
118
124
.
5.
Shiller
,
Z.
, and
Lu
,
H. H.
, 1990, “
Robust Computation of Path Constrained Time Optimal Motions
,”
IEEE International Conference on Robotics and Automation
,
Cincinnati, OH
, May 13–18,
IEEE Comput. Soc. Press
,
Los Alamitos, CA
, Vol.
1
, pp.
144
149
.
6.
Shiller
,
Z.
, and
Lu
,
H. H.
, 1992, “
Computation of Path Constrained Time Optimal Motions with Dynamic Singularities
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
114
, pp.
34
40
.
7.
Zlajpah
,
L.
, 1996, “
On Time Optimal Path Control of Manipulators with Bounded Joint Velocities and Torques
,”
IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
, April 22–28,
IEEE
,
Piscataway, NJ
, Vol.
2
, pp.
1572
1577
.
8.
Smith
,
T. S.
,
Farouki
,
R. T.
,
Timar
,
S. D.
, and
Boyadjieff
,
G. L.
, 2005, “
Algorithms for Time-Optimal Control of CNC Machines Along Curved Tool Paths
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
21
, pp.
37
53
.
9.
Shin
,
K.
, and
McKay
,
N.
, 1986, “
Minimum Time Trajectory Planning for Industrial Robots with General Torque Constraints
,”
IEEE International Conference on Robotics and Automation
,
San Francisco, CA
, April 7–10,
IEEE Comput. Soc. Press
,
Washington, DC
, pp.
412
417
.
10.
Shin
,
K.
, and
McKay
,
N.
, 1986, “
A Dynamic Programming Approach to Trajectory Planning of Robotic Manipulators
,”
IEEE Trans. Autom. Control
0018-9286,
31
, pp.
491
500
.
11.
Geering
,
H. P.
,
Guzzella
,
L.
,
Hepner
,
S. A. R.
, and
Onder
,
C. H.
, 1986, “
Time-Optimal Motions of Robots in Assembly Tasks
,”
IEEE Trans. Autom. Control
0018-9286,
31
, pp.
512
518
.
12.
Wen
,
J.
, and
Desrochers
,
A. A.
, 1987, “
An Algorithm for Obtaining Bang-Bang Control Laws
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
109
, pp.
171
175
.
13.
Gourdeau
,
R.
, and
Schwartz
,
H. M.
, 1989, “
Optimal Control of a Robot Manipulator Using a Weighted Time-Energy Cost Function
,”
IEEE Conference on Decision and Control
,
Tampa, FL
, December 13–15,
IEEE
,
Piscataway, NJ
, Vol.
2
, pp.
1628
1631
.
14.
Chen
,
Y.
, and
Desrochers
,
A. A.
, 1989, “
Structure of Minimum-Time Control Law for Robotic manipulators With Constrained Paths
,”
IEEE International Conference on Robotics and Automation
,
Scottsdale, AZ
, May 14–19,
IEEE Comput. Soc. Press
,
Washington, DC
, Vol.
2
, pp.
971
976
.
15.
Chen
,
Y.
, and
Desrochers
,
A. A.
, 1988, “
Time-Optimal Control of Two-Degree of Freedom Robot Arms
,”
IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
, April 24–29,
IEEE Comput. Soc. Press
,
Washington, DC
, Vol.
2
, pp.
1210
1215
.
16.
Shiller
,
Z.
, 1994, “
On Singular Time-Optimal Control along Specified Paths
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
, pp.
561
566
.
17.
Tarkiainen
,
M.
, and
Shiller
,
Z.
, 1993, “
Time Optimal Motions of Manipulators with Actuator Dynamics
,”
IEEE International Conference on Robotics and Automation
,
Atlanta, GA
, May 2–6,
IEEE Comput. Soc. Press
,
Los Alamitos, CA
, Vol.
2
, pp.
725
730
.
18.
Butler
,
J.
, and
Tomizuka
,
M.
, 1989, “
Trajectory Planning for High Speed Multiple Axis Contouring Systems
,”
Proc. of the American Control Conference
,
Pittsburgh, PA
, June 21–23,
American Automatic Control Council
,
Green Valley, AZ
, Vol.
1
, pp.
87
94
.
19.
Farouki
,
R. T.
,
Tsai
,
Yi-F.
, and
Wilson
,
C. S.
, 2000, “
Physical Constraints on Feedrates and Feed Accelerations Along Curved Tool Paths
,”
Comput. Aided Geom. Des.
0167-8396,
17
, pp.
337
359
.
20.
Imamura
,
F.
, and
Kaufman
,
H.
, 1989, “
Feedrate Optimization for Machine Tool Control Subject to Contour Error Constraints
,”
Proc. of the American Control Conference
,
Pittsburgh, PA
, June 21–23,
American Automatic Control Council
,
Green Valley, AZ
, Vol.
1
, pp.
81
86
.
21.
Imamura
,
F.
, and
Kaufman
,
H.
, 1991, “
Time Optimal Contour Tracking for Machine Tool Controllers
,”
IEEE Control Syst. Mag.
0272-1708,
11
(
3
), pp.
11
17
.
22.
Altintas
,
Y.
, and
Erkorkmaz
,
K.
, 2003, “
Feedrate Optimization for Spline Interpolation in High Speed Machine Tools
,”
CIRP Ann.
0007-8506,
52
, pp.
297
302
.
23.
Renton
,
D.
, and
Elbestawi
,
M. A.
, 2000, “
High Speed Servo Control of Multi-axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
539
559
.
24.
Stori
,
J. A.
, and
Ferreira
,
P. M.
, 2002, “
Design of a High-Speed Parallel Kinematics X-Y Table and Optimal Velocity Scheduling for High-Speed Machining
,”
Trans. NAMRI/SME
1047-3025,
30
, pp.
447
454
.
25.
Bieterman
,
M. B.
, and
Sandstrom
,
D. R.
, 2002, “
A Curvilinear Tool-Path Method for Pocket Machining
,”
Manuf. Eng.
0361-0853,
125
, pp.
709
715
.
26.
Dong
,
J.
, and
Stori
,
J. A.
, 2003, “
Optimal Feed-Rate Scheduling for High-Speed Contouring
,” ASME IMECE2003-MED-42357, Washington, DC, November 15–21, also to appear in the ASME J. of Manufacturing Science and Engineering.
27.
Constantinescu
,
D.
, and
Croft
,
E. A.
, 2000, “
Smooth and Time Optimal Trajectory Planning for Industrial Manipulators Along Specified Paths
,”
J. Rob. Syst.
0741-2223,
17
, pp.
233
249
.
You do not currently have access to this content.