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An Adaptive Economic
Model Predictive Control
Approach for Wind Turbines
Motivated by the reduction of overall wind power cost, considerable research effort has
been focused on enhancing both efficiency and reliability of wind turbines. Maximizing
wind energy capture while mitigating fatigue loads has been one of the main goals for
control design. Recent developments in remote wind speed measurement systems (e.g.,
light detection and ranging (LIDAR)) have paved the way for implementing advanced
control algorithms in the wind energy industry. In this paper, an LIDAR-assisted eco-
nomic model predictive control (MPC) framework with a real-time adaptive approach is
presented to achieve the aforementioned goal. First, the formulation of a convex optimal
control problem is introduced, with linear dynamics and convex constraints that can be
solved globally. Then, an adaptive approach is proposed to reject the effects of model-
plant mismatches. The performance of the developed control algorithm is compared to
that of a standard wind turbine controller, which is widely used as a benchmark for eval-
uating new control designs. Simulation results show that the developed controller can
reduce the tower fatigue load with minimal impact on energy capture. For model-plant
mismatches, the adaptive controller can drive the wind turbine to its optimal operating
conditions while satisfying the optimal control objectives. [DOI: 10.1115/1.4038490]

1 Introduction

The continuous growth in energy demand alongside environ-
mental concerns has led to an immense need for clean and sustain-
able energy sources. One of the most abundant, renewable, and
clean energy sources that can potentially satisfy future energy
demand is the wind [1]. Consequently, the installation of wind tur-
bines for power generation has grown rapidly worldwide during
the last few decades [2]. For instance, the U.S. Department of
Energy has set a goal of reaching a wind capacity level of
305 GW or 20% of the anticipated electrical power supply by the
year 2030 [3]. However, the cost associated with wind energy
generation has hindered the ambitious plans for installing more
wind turbines. This challenge motivates significant research
efforts to improve both efficiency and reliability of wind turbines,
which ultimately leads to the reduction of wind energy cost.

Development of advanced control algorithms for wind turbines
represents one of the major research areas that experiences exten-
sive investigation [4,5]. Among different control methodologies,
model predictive control (MPC) [6–8] has been explored to
achieve specific objectives such as wind energy capture maximi-
zation, fatigue load mitigation, and wind power smoothing [9,10].
In a standard MPC, optimal steady-state set-points are first
selected by an information management system through optimiz-
ing the economic costs of the plant operation. Then, through opti-
mizing a tracking cost function, the MPC tracks such set-points
while directly handling constraints on both inputs and states. The
separation of the economic cost optimization and the optimal
tracking controller undermines the overall performance whenever
the operating plant deviates from its predefined set-point [11].

In order to improve the dynamic economic performance of the
control system, economic MPC approach has been developed
[11–13]. Unlike standard MPC that takes two steps to find
the optimal solution, an economic MPC combines the information
management system and set-points tracking into a single

economic cost optimization step. Thus, the control system directly
and dynamically optimizes the economic cost function online
[11,14,15]; hence, the MPC gains its “economic” attribute. The
economic MPC has recently been considered in numerous appli-
cations such as power systems [16], building climate control [17],
and wind energy applications [18–22]. However, in order to suc-
cessfully implement economic MPC for wind turbine control, sev-
eral issues should be addressed.

An issue associated with MPC methodology is the requirement
of an accurate turbine model. Conventionally, a low-order nonlin-
ear model or a linearized model is adopted [23–25]. A comparison
between linear and nonlinear MPCs in Ref. [26] shows that non-
linear MPC achieves better results when operating away from the
linearization points of the linear MPC. However, implementing
the nonlinear MPC yields a nonconvex optimal control problem
that requires expensive computational effort to solve with no guar-
antee of a global optimal solution. In order to avoid this issue,
nonlinear wind turbine dynamics and operating constraints are
convexified without losing important information. As a result,
convex optimal control algorithms can be used to yield a globally
optimal solution.

As shown in Ref. [19], the optimal control problem within the
economic MPC framework has been formulated as a convex opti-
mal control problem with linear dynamics and convex constraints.
It effectively smoothens the wind power supplied to the grid for
an integrated turbine and energy storage system. Yet, this method
does not consider the effect of control actions on turbine fatigue
loading, which can cause premature failures. A more comprehen-
sive control is desirable to optimize wind power supply as well as
turbine fatigue mitigation. How to formulate the fatigue load esti-
mation into a convex problem and minimize its associated compu-
tational cost are new challenges and will be discussed in this
paper.

Moreover, standard MPC algorithms adopted for wind turbines
assume the absence of model-plant mismatches. With this
assumption, the standard MPC methodology usually achieves the
anticipated objectives including smoothing wind power in
Ref. [10], reducing fatigue loads in Refs. [23] and [27], and han-
dling hard constraints on actuators in Ref. [28]. However, the
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unmodeled aeroelastic response of the turbine blades and the sto-
chastic nonuniform wind inflow introduce mismatches between
the model and the plant parameters [29], which lead to degrada-
tion of the controller’s performance. Many robust MPC algo-
rithms [30,31] found in literature can handle model-plant
mismatches. However, these algorithms focus on the uncertainty
of wind speed measurement that affects the accuracy of the linear-
ized model within the MPC framework. Alongside robust MPC
algorithms, many adaptive control algorithms have been devel-
oped to reject the influence of other model uncertainties [32–35],
such as changes in the blade aerodynamics over time which leads
to deviations between the actual and theoretical power coefficient
surfaces. Despite their success, those adaptive control algorithms
need to evaluate the average system performance over a long-time
horizon before adapting the control gains in real time. In addition,
the tuning range of the control gains is large and may vary signifi-
cantly for different wind turbines. Consequently, the adaptation
rates of those algorithms are slow. A fast adaptive control
algorithm was proposed by Ma et al. [36,37] and will be imple-
mented here. It can rapidly and robustly track the optimal operat-
ing point that leads to maximum power generation under model
uncertainties.

This paper describes the development of a light detection and
ranging (LIDAR)-assisted economic MPC framework with an
adaptive control for wind turbines. A wind turbine model is pre-
sented, including both drivetrain and tower fore-aft dynamics.
Based on this model, an economic MPC controller is proposed
using convex optimization approach. An LIDAR system is
adopted to provide the necessary preview of wind speed ahead of
the wind turbine. An adaptive algorithm is introduced to over-
come model-plant mismatches. The developed controller maxi-
mizes wind energy capture and mitigates fatigue loads acting on
the wind turbine tower while rejecting the effect of model-plant
mismatches. The performance of the proposed framework is
compared to a baseline controller (BLC) developed in Ref. [38],
which incorporates a variable-speed generator torque control and
a gain-scheduled proportional–integral blade pitch control.

The main contributions of this work are summarized as follows:
First, the tower fore-aft dynamics is integrated into the convex
optimal control problem, within the economic MPC framework,
which can be solved globally. Second, the LIDAR-assisted eco-
nomic MPC framework is applied to maximize energy capture
and mitigate the tower fatigue loading for the full range of the
wind turbine operation. Finally, an adaptive algorithm, developed
previously by Ma et al. [36,37], is integrated into the economic
MPC framework to robustly account for the model-plant
mismatches.

2 Wind Turbine Model

A high-order nonlinear model of a horizontal axis wind turbine
is selected as the plant model to carry out the numerical simula-
tions [39]. However, the inclusion of such complex model within
the economic MPC framework is not recommended due to the
associated high computational cost. As a result, the high-order
model is reduced to a lower order model, which is suitable for
model-oriented control design. The models formulated in this sec-
tion were introduced previously by the authors in Ref. [22] and
presented here with more details for the review purpose.

2.1 Wind Power Plant Model. An eighth-order dynamic
model of a wind turbine is presented here as the plant model [39].
It is based on the NREL 5 MW wind turbine model with its
parameters summarized in Table 1 [38]. The wind turbine model
consists of a third-order drivetrain model, a second-order tower
model, a first-order generator model, and a second-order pitch
actuator model. The third-order drivetrain model can be described
as two rotating inertias connected with a torsional spring and
damper

_xr ¼
1

Jr
Tr � /Ks � _/Bs

� �

_xg ¼
1

Jg
�Tg þ

1

n
/Ks þ _/Bs

� �� �

_/ ¼ xr �
1

n
xg

where xr , xg, and / are the rotor speed, generator speed, and
drivetrain torsional deflection, respectively. The rotor and genera-
tor inertias are denoted by Jr and Jg, respectively. The rotor and
generator torques are denoted by Tr and Tg, respectively. The
drivetrain equivalent torsional stiffness and damping are denoted
by Ks and Bs, respectively. The gearbox ratio is denoted by n. The
second-order tower model will be described in Sec. 2.2.

2.2 Reduced-Order Nonlinear Model. The eighth-order
nonlinear model has been simplified to capture the relevant sys-
tem dynamics that is crucial to the performance of the model pre-
dictive controller. The third-order drivetrain model has been
reduced to single-order model, while the second-order model of
the tower is kept the same. Both generator and pitch actuator mod-
els have been omitted. Thus, a third-order model is employed
within the MPC framework. The dynamics of the wind turbine
drivetrain can be described as a single rotational mass model as
follows:

_xg ¼
1

J

1

n
Tr � Tg

� �
(1)

with xg ¼ nxr . The equivalent moment of inertia of both the rotor
and generator calculated about the generator shaft (high-speed
shaft) axis is given by J ¼ Jg þ Jr=n2. Upper and lower bounds
limit the generator speed and torque as follows:

xg;min � xg � xg;max (2a)

0 � Tg � Tg;max (2b)

The aerodynamic rotor torque includes one of the model nonli-
nearities and is calculated as follows:

Tr ¼
1

2xr
qAcp k;bð Þv3 (3)

where q is the air density, A is the rotor swept area, v is the wind
speed, and b is the blade pitch angle. The tip-speed ratio
k ¼ xrDr=ð2vÞ, where Dr is the rotor diameter. The power

Table 1 NREL 5 MW wind turbine model parameters [38]

Parameter Magnitude

Rated power, Pg,rated 5 MW
Rotor diameter, Dr 126 m
Hub height, Hh 90 m
Cut-in wind speed 3 m/s
Cut-out wind speed 25 m/s
Rated wind speed 11.4 m/s
Gear ratio, n 97
Rotor inertia, Jr 35,444,067 kg/m2

Generator inertia, Jg 534.116 kg/m2

Tower equivalent mass, MT 438,000 kg
Tower equivalent damping, CT 6421 N s/m
Tower equivalent stiffness, KT 1,846,000 N/m
Optimal tip-speed ratio, ko 7.6
Optimal blade pitch angle, bo 0 deg
Maximum power coefficient, cp,max 0.4868
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coefficient cp is a nonlinear function of the tip-speed ratio and
blade pitch angle, which is shown in Fig. 1 and available as a
lookup table. Upper and lower bounds limit the blade pitch angle
as follows:

bmin � b � bmax (4)

Finally, the aerodynamic power extracted from the wind by the
rotor is given as

Pr ¼ Trxr ¼
1

2
qAcp k;bð Þv3 (5)

while the electrical generator power is given by

Pg ¼ ggTgxg (6)

where gg is the generator efficiency. The electrical generator
power is limited by upper and lower bounds as follows:

0 � Pg � Pg;rated (7)

where Pg;rated is the rated generator power.
The dynamics of the fore-aft bending mode of the tower is

modeled as a second-order system [40]

MT €xT þ BT _xT þ KTxT ¼ FT (8)

where xT is the fore-aft displacement of the tower top, and MT ,
BT ; and KT are the tower equivalent mass, structural damping,
and bending stiffness, respectively. The thrust force FT , which
includes another model nonlinearity, is calculated as follows:

FT ¼
1

2
qAct k; bð Þv2 (9)

where the thrust coefficient ct is a nonlinear function of the tip-
speed ratio and blade pitch angle, which is shown in Fig. 2 and
also available as a lookup table.

The reduced-order nonlinear model of the wind turbine
drivetrain and tower (i.e., Eqs. (1) and (8)) can be rearranged in a
standard nonlinear state-space form

_x ¼ f ðx; u; dÞ

y ¼ gðx;u; dÞ

where the state vector x, the input vector u, the disturbance d, and
the output vector y are

x ¼ xg xT _xT½ �T

u ¼ Tg b
� �T

d ¼ v

y ¼ xg xT _xT½ �T

8>>>>><
>>>>>:

(10)

3 Formulation of the Convex Optimization Problem

The integration of convex optimization tools within a model
predictive control framework requires the transformation of the
aforementioned nonlinear model to a new model with linear
dynamics and convex constraints [19]. The concept behind this
transformation is to visualize the drivetrain model of the wind
turbine from the perspective of power flows and energies. The
convex optimization problem formulated in this section was intro-
duced previously in Ref. [22] and presented here with more details
for the review purpose.

This model consists of a turbine drivetrain model and a tower
model. The model variables described in Eq. (10) are transformed
to a set of new variables as follows:

x ¼ K X V½ �T

u ¼ Pg Pr½ �T

d ¼ v

y ¼ K X V½ �T

8>>>>><
>>>>>:

(11)

where K is the kinetic energy stored in the rotating components
(i.e., K ¼ J=2ð Þx2

g), and X and V are the displacement and veloc-
ity of the tower top as a function of the new variables, respec-
tively. The transformation from the original set of variables to the
new set of variables, and vice versa, will be detailed in this sec-
tion. For instance, the generator torque can be reconstructed from
the new variables (i.e., Pg and K) as follows:

Tg ¼
Pg

xggg

¼ Pg

gg

ffiffiffiffiffiffiffiffiffiffiffi
2K=J

p

3.1 Drivetrain Dynamic Model. Using the new set of varia-
bles, the drivetrain dynamics in Eq. (1) can be transformed as
follows:

_K ¼ Jxg _xg ¼ xg
1

n
Tr � Tg

	 

¼ Pr �

1

gg

Pg (12)

Fig. 1 Power coefficient of the NREL 5 MW horizontal axis
wind turbine

Fig. 2 Thrust coefficient of the NREL 5 MW horizontal axis
wind turbine
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The constraints defined in Eq. (2) can be rewritten as follows:

J

2
x2

g;min � K � J

2
x2

g;max (13a)

0 � Pg � ggTg;max

ffiffiffiffiffiffiffiffiffiffiffi
2K=J

p
(13b)

where Eq. (13a) is a linear constraint on K, and Eq. (13b) is a convex

constraint on Pg and K, where
ffiffiffiffiffiffiffiffiffiffiffi
2K=J

p
is a concave function of K.

A new variable called the available wind power is defined as a
function of kinetic energy and wind speed as follows:

Pav v;Kð Þ ¼ max
bmin�b�bmax

1

2
qAcp v;

1

n

ffiffiffiffiffiffiffiffiffiffiffi
2K=J

p
;b

	 

v3 (14)

As can be seen from Eq. (14), the tip-speed ratio inside the power
coefficient function has been replaced by wind speed and kinetic
energy. Thus, the lookup table of the power coefficient can be
rebuilt as a function of wind speed, kinetic energy, and blade pitch
angle. Consequently, a new lookup table for the available wind
power can be constructed based on the original lookup table of the
power coefficient. For a given wind speed and kinetic energy (i.e.,
generator speed), the available wind power represents an upper
bound on the aerodynamic power extracted from the wind by the
rotor as follows:

0 � Pr � Pavðv;KÞ (15)

According to Eq. (15), as the blade pitch angle b varies, the
extracted power Pr increases from zero to the available power
Pav v;Kð Þ at given values of wind speed and kinetic energy. As a
result, the blade pitch angle can be inversely calculated with the
knowledge of wind speed, kinetic energy, and extracted power.

The next step is to establish the convexity of the constraint
defined in Eq. (15). The variation of the available power
Pav v;Kð Þ, normalized by v3, with the kinetic energy K for differ-
ent wind speeds is shown in Fig. 3. It can be noticed that for each
wind speed, the normalized available power Pav v;Kð Þ=v3 is nearly
a concave function of kinetic energy K. Consequently, it is possi-
ble to approximate Pav v;Kð Þ for each wind speed as a concave
function of K with relatively small error (less than 1%).

In Ref. [19], the approximated available power is computed for
a number of discrete values vi of the wind speed and expressed as
piecewise linear functions as follows:

P̂av;vi
Kð Þ ¼ min a1K þ b1;…; akK þ bkf gv3

i

with k affine functions [41]. For any value of wind speed, v lies
between two discrete values v1 and v2, it is possible to find the

approximation P̂av v;Kð Þ of the available power Pav v;Kð Þ by lin-

ear interpolation of two adjacent functions P̂av;v1
Kð Þ and P̂av;v2

Kð Þ

P̂av v;Kð Þ ¼ 1� �ð ÞP̂av;v1
Kð Þ þ �P̂av;v2

Kð Þ (16)

where � ¼ ðv� v1Þ=ðv2 � v1Þ. The approximated available power

P̂av v;Kð Þ is a concave function of K because it is a linear interpo-
lation of two concave functions. As a result, the constraint defined
in Eq. (15) can be replaced, with negligible error, by the following
convex constraint:

0 � Pr � P̂av v;Kð Þ (17)

3.2 Tower Dynamic Model. The dynamics of the fore-aft
bending mode of the tower described in Eq. (8) can be rewritten
in a state-space form as a function of the new variables as follows:

_X ¼ V
_V ¼ 1

MT
FT v;K;Prð Þ � BTV � KTX½ �

8<
: (18)

Based on the new variable transformation, the nonlinear thrust
force FT is formulated as a function of wind speed, kinetic energy,
and aerodynamic rotor power. As previously mentioned, formula-
tion of the convex optimization problem requires a model with
linear dynamics and convex constraints. At each time-step, the
nonlinear thrust force in Eq. (18) will be replaced with a linear
approximation to yield a linear dynamic model. Consequently, a
convex optimization problem can be solved globally and rapidly
instead of using computationally expensive nonconvex optimiza-
tion tools.

For the model predictive control algorithm, the measured wind
speed profile over the prediction horizon is available at the begin-
ning of the algorithm execution. Additionally, new measurements
of generator speed (i.e., kinetic energy) and blade pitch angle are
also available. With the knowledge of the wind speed at each
time-step, the power and thrust coefficients can be represented as
nonlinear functions of the kinetic energy and blade pitch angle

ci
p K;bð Þ ¼ Pi

r

0:5qAv3
i

(19a)

ci
t K;bð Þ ¼ Fi

T

0:5qAv2
i

(19b)

where i ¼ 1; 2;…;Npf g, and Np is the prediction and control hori-
zon. For each wind speed, the maximum thrust force can be
defined as

Fi
T ¼ max

bmin � b � bmax

Kmin � K � Kmax

0:5qAct K;bð Þv2
i

Then, the linearization procedure starts with performing first-
order Taylor series expansions of the power and thrust coefficients
around the measured kinetic energy K� and blade pitch angle b�

as follows:

ci
p k;bð Þ ¼ ci

p K�; b�ð Þ þ
@ci

p

@K

�����
K� ;b�

Ki � K�ð Þ þ
@ci

p

@b

�����
K�;b�

bi � b�
� �

¼ qi
pb

i þ ri
pKi þ si

p

(20a)

Fig. 3 The available power Pav(v,K) normalized by v3 and plot-
ted against kinetic energy K for a range of wind speeds from
3 m/s to 25 m/s with an increment of 1 m/s
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ci
t k; bð Þ ¼ ci

t K�;b�ð Þ þ @ci
t

@K

����
K�;b�

Ki � K�ð Þ þ @ci
t

@b

����
K�;b�

bi � b�
� �

¼ qi
tb

i þ ri
tK

i þ si
t

(20b)

where qi
p, ri

p, si
p, qi

t, ri
t , and si

t are constants and can be directly
derived from Eq. (20) for each step of the prediction horizon.
Combining Eqs. (19) and (20) and eliminating the blade pitch
angle bi, a linear relationship between thrust force from one side
and rotor power and kinetic energy from the other side can be
derived at each time-step

F̂
i

T ¼
qi

t

qi
pvi

 !
Pi

r þ 0:5qAv2
i ri

t � ri
p

qi
t

qi
p

 !
Ki

þ 0:5qAv2
i si

t � si
p

qi
t

qi
p

 !

¼ QiPi
r þ RiKi þ Si (21)

The linear expression in Eq. (21) can be rearranged in a compact
matrix form as follows:

F̂T ¼ QPr þ RK þ S (22)

with

0 � F̂T � FT;max

where F̂T is the linearized thrust force vector corresponding to the
measured wind speed vector as a function of the new variables,

Q ¼ diag Qi
� �

is an Np � Np matrix, R ¼ diagðRiÞ is an Np � Np

matrix, S ¼ S1;…; SNp
� �T

is an Np � 1 vector, and FT;max ¼

Fi
T;max;…;F

Np

T;max

h iT

is an Np � 1 vector. Finally, the nonlinear

thrust force in Eq. (18) will be replaced with the linear expression
derived in Eq. (22), thus yielding a linear tower dynamic model as
a function of the new variables.

This linear approximation is repeated at each time-step with
new measurements of wind speed, generator speed, and blade
pitch angle. The error between the linear and nonlinear thrust
forces depends mainly on the accuracy of the measured wind
speed and the deviation of generator speed and blade pitch angle
during the prediction horizon from their initial measured values.
The previously mentioned linearization method provides a predic-
tion of the thrust force leading to a linear wind turbine model (i.e.,
drivetrain and tower). Consequently, the convex optimization
problem within the economic MPC can be globally solved with
significantly lower computational effort compared to nonlinear
MPC approaches [23].

3.3 Convex Optimization Problem. The analysis in Secs.
3.1 and 3.2 has detailed the linearization of the nonlinear wind tur-
bine model using the new variables transformation defined in Eq.
(11) as follows:

_K ¼ Pr �
1

gg

Pg

_X ¼ V

_V ¼ 1

MT
QPr þ RK þ S� BTV � KTX½ �

8>>>>><
>>>>>:

(23a)

The linearized wind turbine model can be directly represented in a
standard linear state-space form as follows:

_x tð Þ ¼ Atx tð Þ þ Btu tð Þ (23b)

where At 2 R3�3 and Bt 2 R3�2 are the system and input matri-
ces, respectively. Additionally, the linearized wind turbine model
is subjected to the convex constraints defined in Eqs. (13) and
(17) on the state K and the inputs Pr and Pg

J

2
x2

g;min � K � J

2
x2

g;max

0 � Pg � min ggTg;max

ffiffiffiffiffiffiffiffiffiffiffi
2K=J

p
;Pg;rated

n o
0 � Pr � P̂av v;Kð Þ
0 � F̂T � FT;max

8>>>>>>><
>>>>>>>:

(24)

As previously mentioned, the main goal of solving this convex
optimization problem is to find the optimal control inputs (i.e., Pg

and Pr) that satisfy two main objectives, namely, maximization of
power generation and minimization of tower fatigue loads. The
cost function E is defined as the integral of the objective function
F over the time horizon T while considering the linear model
defined in Eq. (23b) and the set of constraints G defined in
Eq. (24)

max
u tð Þ

E ¼
ðT

0

F x tð Þ; u tð Þ; d tð Þð Þdt; 8t 2 0; T½ �

s:t: _x tð Þ ¼ Atx tð Þ þ Btu tð Þ
x 0ð Þ ¼ x0

G x tð Þ; u tð Þ; d tð Þð Þ � 0

(25)

The objective function F is constructed from a number of terms as
follows:

F x tð Þ; u tð Þ; d tð Þð Þ

¼ a1Pg tð Þ � a2
_Pg tð Þ
h i2

� a3
_Pr tð Þ
� �2 þ a4P̂av v tð Þ;K tð Þð Þ

�a5 V tð Þ½ �2 � a6 max K tð Þ � J

2
x2

g;rated; 0

� � �
� a7 K tð Þ � �K

� �2
(26)

where a1–a7 are the positive constants that determine the tradeoffs
among the objective function terms. In order to solve the optimal
control problem as a convex optimal control problem, it is essen-
tial to prove the concavity (i.e., convexity for minimization) of all
the terms of the cost function. The positive terms of the cost func-
tion will be maximized, while the negative terms will be
minimized.

The first term represents the total energy harvested over a
period of time T, which is a linear (concave) function of the
control input Pg. The second term represents the variation of the
generated power over time, which is a quadratic (convex) func-
tion. The third term represents the variation of the rotor power
over time, which is a quadratic (convex) function. The fourth term
represents the approximated available wind power, which was
proven to be concave in Eq. (16). The fifth term is the velocity of
the tower top, which is a quadratic (convex) function. Here, the
basic strategy is to minimize the fatigue loads acting on the tower
base due to the variations of the tower fore-aft bending moment
(TFAM), which is calculated as follows [23]:

d

dt
TFAMð Þ ¼ Hh BT €xT þ KT _xTð Þ

where Hh is the hub height. Thus, directly minimizing the rate of
change of the fore-aft bending moment will eventually minimize
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€xT causing the undesirable minimization of xT which is not effec-
tive in fatigue load mitigation. Consequently, minimizing _xT only
will effectively minimize the rate of change of the fore-aft bend-
ing moment, hence, mitigate the fatigue loads. The sixth term is a
penalty on the kinetic energy (i.e., generator speed) for exceeding
its rated value, which is a convex function.

The last term is the deviation of the kinetic energy away from
its reference value, which is a quadratic (convex) function. The
reference kinetic energy �K is determined by

�K ¼ 2J
nv

Dr

	 
2

k�ð Þ2

where k� is the reference tip-speed ratio. Ideally, the reference tip-
speed ratio is equivalent to the theoretical optimal tip-speed ratio
(i.e., k� ¼ ko). However, the existence of model-plant mismatches
leads to the deviation of the optimal tip-speed ratio from its theo-
retical value due to blade deflection, nonuniform wind inflow, etc.
Consequently, an adaptive approach is adopted to search for the
true optimal tip-speed ratio during wind turbine operation. Thus,
the last term in the objective function Eq. (26) will ensure the con-
vergence of the reference tip-speed ratio to the true optimal tip-
speed ratio. The adaptive approach algorithm will be detailed in
Sec. 4. Finally, the optimal control problem can be solved globally
as a convex optimal control problem, with linear dynamics, con-
vex constraints, and concave objective function to be maximized.

4 Control Methodology

The proposed control framework integrates an LIDAR-assisted
economic model predictive controller (eMPC) with an adaptive
algorithm to maximize wind energy capture and mitigate the
tower fatigue loads while rejecting the effects of model-plant mis-
matches. A block diagram of the proposed control design is shown
in Fig. 4. The details of the eMPC and the adaptive algorithm are
presented in Secs. 4.1 and 4.2.

4.1 Light Detection and Ranging-Assisted Economic Model
Predictive Control. The effective implementation of the eMPC
requires a preview information of the wind disturbances ahead of
the wind turbine. In this paper, an LIDAR system [42–44] is used to
provide a perfect preview of the hub-height wind speed over a pre-
diction horizon T ¼ 10s with an update rate Dt ¼ 0:2s equivalent to
the LIDAR update rate [23]. The wind speed direction is assumed to
be unchanging and facing the rotor plan. As a result, the prediction
horizon (same as the control horizon) can be divided into Np ¼ 50
steps. Consequently, a discretized optimal control problem, equiva-
lent to Eq. (25), is solved over the prediction horizon at each step

max
u ið Þ

E ¼
XNp�1

i¼0

F x ið Þ; u ið Þ; d ið Þ
� �

s:t: x iþ 1ð Þ ¼ Adx ið Þ þ Bdu ið Þ
x 0ð Þ ¼ x0

G x ið Þ;u ið Þ; d ið Þ
� �

� 0

(27)

where Ad 2 R3�3 and Bd 2 R3�2 are the discrete system and
input matrices, respectively. A sequence of control inputs will be
obtained from solving the optimal control problem in Eq. (27), out
of which the control input at the first step uð0Þ is applied to the
plant. As a set of new measurements is available, the controller
repetitively solves the optimal control problem in Eq. (27) at each
step (i.e., equal to the LIDAR update rate).

4.2 Adaptive Approach. In addition to the previewed wind
speed and the measured states, the eMPC also requires the true
optimal tip-speed ratio. The optimal reference tip-speed ratio may
deviate from the simulation-derived optimal value due to blade

deflection, nonuniform wind inflow, etc. An adaptive algorithm,
previously developed by Ma et al. [36], is recaptured as follows.

In every Tadp seconds, the algorithm checks whether the
tip-speed ratio has converged to its reference value based on the
following condition:

kavg � k�
�� �� < d (28)

where kavg refers to the average tip-speed ratio during the time
period Tadp, and d is a small positive constant to test the conver-
gence of the tip-speed ratio. If the previously mentioned condition
is not satisfied, the algorithm proceeds without updating k�. Other-
wise, the average power coefficient during this period is estimated
as follows:

cp;avg ¼
0:5Jr x2

r;f � x2
r;0

� �
þ n

ðtf

t0

Tgxdt

0:5qA

ðtf

t0

v3dt

(29)

where t0 and tf denote the start and end times of the period; xr;0

and xr;f are the rotor speed at t0 and tf , respectively. Then, kavg

and cp;avg are recorded in sets K and C, respectively. Let Gn�1

denotes the largest subset of K such that gi � koj j < d is satisfied
8gi 2 Gn�1. Hn�1 denotes a subset of C that corresponds to Gn�1.
An adaptive approach based on a local linear regression method is
applied as follows:

ko k þ 1ð Þ ¼ ko kð Þ þ gsign½ G� �Gð ÞTðH � �HÞ�

g ¼ a G� �Gð ÞTðG� �GÞ
� ��1

G� �Gð ÞTðH � �HÞ
����

����
gmin � g � gmax

8>>>><
>>>>:

(30)

where �G and �H refer to the mean value of G and H, respectively,
and a is an influence factor of the step size g. A lower-bound step
size gmin is selected to prevent the adaptation rate from severely
slowing down. The step size is also limited by an upper bound,
gmax, to minimize the effect of sudden measurement errors or dis-
turbances on the wind turbine. The parameters to be selected in
the proposed adaptive method include the length of the time
period, Tadp, the step size influence factor, a, and the bounds on
the step size, gmin and gmax. This adaptive technique allows the
eMPC to robustly converge to the optimal operation of a wind tur-
bine system despite the model-plant mismatches.

5 Simulation Results

The performance of developed eMPC is compared to the perform-
ance of a BLC, which is widely used as a benchmark for evaluating
new control algorithms. It combines a variable-speed generator tor-
que controller and a gain-scheduled proportional–integral blade pitch

Fig. 4 A simplified block diagram of the wind turbine closed-
loop system with the eMPC and the adaptive algorithm
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controller. Both controllers operate under the same constraint of
maximum rate limits of the control inputs (i.e., blade pitch angle and
generator torque). The main aspects of comparison are the efficiency
of wind energy capture and TFAM. The damage equivalent load
(DEL) represents a means for evaluating the TFAM acting on the
turbine tower. It is a single number that quantitatively indicates the
damage caused by fatigue loadings acting on wind turbine structure
and drivetrain [45–47]. In this study, the TFAM DEL is obtained
using a rainflow-counting algorithm with the NREL MLife code
[48]. The first set of results shows responses of both controllers to
step changes of wind speed. Next, responses of both controllers
under volatile wind speed profiles are presented and compared.
Finally, a model-plant mismatch is introduced to investigate its effect
on the performance of both controllers.

5.1 Controller Performance Under Stepwise Wind Speed.
A comparison between the responses of BLC and eMPC to step
changes in wind speed ranging from 8 to 10 m/s is shown in
Fig. 5. As shown in Fig. 5, the oscillations in the TFAM have
been reduced significantly in case of eMPC as compared to BLC.
Additionally, the TFAM DEL has been reduced by 6.6% as shown
in Table 2. This improvement is attributed to the blade pitch con-
trol of the eMPC around the step change instance. This blade
pitching activity is not possible in case of BLC because the blade
pitch control is only active for above rated generator speed opera-
tion. The TFAM is mainly caused by the thrust force acting on the
turbine rotor disk. As shown in Fig. 2, increasing the blade pitch
angle leads to the decrease of the thrust coefficient, which eventu-
ally leads to the reduction of the thrust force. However, deviating
the blade pitch angle away from its optimal value leads to slight
reduction in power coefficient, which results in a 0.65% drop of
wind energy capture.

Figure 6 compares the responses of BLC and eMPC to steps in
wind speed ranging from 11 to 13 m/s, and the results are sum-
marized in Table 3. With eMPC, a reduction of up to 26% is

achieved in TFAM DEL with a slight sacrifice in energy capture
(i.e., 0.29%). At time around 200 s, the wind turbine with LIDAR-
assisted eMPC switches from partial-load to full-load operation.
At that switching instant, it can be noticed that both generator
power and torque gradually and smoothly shift from their steady-
state values in the partial-load region to their rated steady-state
values in the full-load region.

5.2 Controller Performance Under Volatile Wind Speed
Profiles. The next step in the investigation process of the eMPC
effectiveness is to evaluate its response under volatile wind speed
profiles. Two wind speed profiles were generated using TurbSim
[49] with 25% turbulence intensity and average wind speeds equal
to 7.5 and 12.5 m/s, respectively. Figure 7 shows a comparison
between the responses of BLC and eMPC under a volatile wind
profile with an average wind speed equal to 7.5 m/s. The quantita-
tive comparison results are summarized in Table 3. A significant
reduction, up to 25%, in the TFAM DEL has been achieved by
using eMPC as compared to BLC with a slight loss in energy cap-
ture (i.e., 0.5%). The reduction in energy capture is mainly attrib-
uted to the blade pitching activity, as shown in Fig. 7, aiming at

Fig. 5 A comparison between the responses of the BLC and
the eMPC to steps in wind speed ranging from 8 to 10 m/s with
1 m/s increment

Table 2 Comparison between the performance of the BLC and
eMPC under stepwise in wind speed

Controller Energy (kW h) TFAM DEL (MN m)

Steps in wind speed ranging from 8 to 10 m/s
BLC 257.1420 29.106
eMPC 255.4699 27.173
eMPC versus BLC �0.6502% �6.6412%

Steps in wind speed ranging from 11 to 13 m/s
BLC 516.7889 46.577
eMPC 515.2734 34.363
eMPC versus BLC �0.2933% �26.223%

Fig. 6 A comparison between the responses of the BLC and
the eMPC to steps in wind speed ranging from 11 to 13 m/s with
1 m/s increment
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reducing the TFAM DEL. As previously explained, deviating the
blade pitch angle away from its optimal value during partial-load
operation leads to a slight reduction in power coefficient, hence
energy capture.

Figure 8 shows another comparison between the responses of
BLC and eMPC under a volatile wind profile with an average
wind speed equal to 12.5 m/s. The quantitative results summarized
in Table 3 show an improvement in both energy capture by 1.17%
and TFAM DEL by 22.8% for the eMPC as compared to BLC.
Figure 8 also shows the significant reduction in the sudden varia-
tions of the control actions, namely, the generator torque and the
blade pitch angle, in case of eMPC as compared to BLC. This is
attributed to the effect of the second and third terms in the cost
function (Eq. (26)).

For both wind speed profiles, the results in Tables 2 and 3 agree
with results obtained in Ref. [23], which adopted a nonlinear
model predictive control approach. The results showed the
improvement of TFAM DEL for wind profiles with average wind
speeds below 8 m/s and the improvement of both energy capture
and TFAM DEL for average wind speeds above 8 m/s. 5.3 Controller Performance Under Model-Plant Mismatches.

In the previously mentioned results, the model parameters were
assumed to perfectly match the plant parameters. In this subsec-
tion, the impact of model-plant mismatch on the responses of
BLC and eMPC with the proposed adaptive approach is investi-
gated. As previously mentioned, the most important parameter of
a wind turbine is its power coefficient, which is a function of the
tip-speed ratio and blade pitch angle. The aforementioned model-
plant mismatches are mainly related to deviations between the
actual and theoretical power coefficient surfaces. The impact of
model-plant mismatches on controller performance is more signif-
icant during partial-load operation, as they directly affect the
energy capture. Nevertheless, tracking the optimal tip-speed ratio
is not an objective during full-load operation. Consequently, this
subsection will focus only on the controller’s response in the
partial-load region.

During partial-load operation, the blade pitch angle is set at its
optimal value in case of BLC. Concurrently, the generator torque
control law takes the following form:

Tg ¼ Mx2
g; with M ¼ 1

16
qAD3

r

cp koð Þ
koð Þ3

(31)

The torque control gain, M, depends on the optimal tip-speed ratio
and the corresponding maximum power coefficient. Thus, a devia-
tion of the optimal tip-speed ratio results in a deviated control
gain. As a result, the BLC fails to track the actual optimal tip-
speed ratio for maximum energy capture. In order to study the
effect of deviations in the power coefficient from its theoretical
value on the controller response, a deviated power coefficient

surface cd
pðkd; bÞ is assumed as shown in Fig. 9. The introduced

deviation leads to 10% error in the optimal tip-speed ratio (i.e.,

ko
d ¼ 0:9ko) and the maximum power coefficient (i.e., cd

p ko
d

� �
¼ 1:1cpðkoÞ). A corresponding deviation has also been introduced
to the thrust coefficient surface.

Fig. 7 A comparison between the responses of the BLC and
the eMPC under a 10 min volatile wind profile with an average
equal to 7.5 m/s

Fig. 8 A comparison between the responses of the BLC and
the eMPC under a 10 min volatile wind profile with an average
equal to 12.5 m/s

Table 3 Comparison between the performance of the BLC and
eMPC under volatile wind speed profiles

Controller Energy (kW h) TFAM DEL (MN m)

Wind speed profile with 7.5 m/s mean wind speed
BLC 259.4681 31.421
eMPC 258.1350 23.558
eMPC versus BLC �0.5138% �25.025%

Wind speed profile with 12.5 m/s mean wind speed
BLC 760.9337 83.114
eMPC 769.8906 64.130
eMPC versus BLC þ1.1771 �22.8409%
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A wind speed profile with 25% turbulence intensity, 7.5 m/s
average wind speed, and 20 min time span is used to demonstrate
the response of both controllers under model-plant mismatches.
As shown in Fig. 10, as the torque control gain deviates from its
true optimal value, the BLC fails to track the actual optimal tip-
speed ratio. Consequently, the BLC fails to maximize the power
coefficient which leads to a drop in energy capture. On the other
hand, the tip-speed ratio gradually converges to its actual optimal
value in case of eMPC with the adaptive approach. This is attrib-
uted to the ability of the adaptive algorithm to update the refer-
ence tip-speed ratio despite the mismatches between the model
and the plant parameters.

Consequently, the eMPC can achieve higher values of the
power coefficient, hence energy capture. Additionally, the blade

pitch angle activity in case of eMPC is mainly responsible for the
significant decrease in TFAM DEL as shown in Table 4.

6 Conclusion

In this work, an LIDAR-assisted eMPC framework with an
adaptive approach for wind turbines has been developed to maxi-
mize wind energy capture, reduce the tower fatigue loading, and
reject the model-plant mismatch. Convex optimal algorithms have
been used to find the global optimal controller. An adaptive algo-
rithm has also been integrated with the eMPC framework to reject
the effects of model-plant mismatches. Compared to the baseline
controller, simulation results show that the proposed controller
reduces tower fatigue load with a minimal impact on energy cap-
ture. Additionally, the adaptive algorithm proves its effectiveness
in rejecting the impacts of model-plant mismatches on the control-
ler performance. In summary, the proposed controller improved
both energy capture and tower fatigue loads as compared to the
baseline controller. In our future work, the effect of imperfect pre-
view of wind on the performance of eMPC will be investigated.
Additionally, expanding the eMPC framework to mitigate the
fatigue loads acting on the blades and the drivetrain will be
addressed.
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Nomenclature

A ¼ rotor swept area
Bs ¼ drivetrain equivalent torsional damping
BT ¼ tower equivalent damping
cp ¼ power coefficient
ct ¼ thrust coefficient

Dr ¼ rotor diameter
FT ¼ rotor thrust force
Hh ¼ hub height

J ¼ equivalent drivetrain moment of inertia
Jg ¼ generator moment of inertia
Jr ¼ rotor moment of inertia
K ¼ kinetic energy stored in the rotating components

Ks ¼ drivetrain equivalent torsional stiffness
KT ¼ tower equivalent stiffness
MT ¼ tower equivalent mass

n ¼ gearbox ratio
Np ¼ prediction and control horizon

Pav ¼ available wind power
Pg ¼ generator power
Pr ¼ rotor power
Tg ¼ generator torque
Tr ¼ rotor torque
v ¼ wind speed
V ¼ transformed fore-aft velocity of the tower top
X ¼ transformed fore-aft displacement of the tower top
xT ¼ fore-aft displacement of the tower top
b ¼ collective blade pitch angle
gg ¼ generator efficiency
k ¼ tip-speed ratio

Fig. 10 A comparison between the responses of BLC and
eMPC with model-plant mismatches under a 20 min volatile
wind profile with an average equal to 7.5 m/s

Table 4 Comparison between the performance of the BLC and
eMPC under model-plant mismatches

Controller Energy (kW h) TFAM DEL (MN m)

BLC 512.2372 29.318
eMPC 519.3657 23.061
eMPC versus BLC þ1.3916% �21.34%

Fig. 9 Theoretical versus deviated power coefficient for the
NREL 5 MW horizontal axis wind turbine
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q ¼ air density
/ ¼ drivetrain torsional deflection

xg ¼ generator angular speed
xr ¼ rotor angular speed
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