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This paper presents a hierarchical nonlinear control algorithm for the real-time planning
and control of cooperative locomotion of legged robots that collaboratively carry objects.
An innovative network of reduced-order models subject to holonomic constraints,
referred to as interconnected linear inverted pendulum (LIP) dynamics, is presented to
study cooperative locomotion. The higher level of the proposed algorithm employs a
supervisory controller, based on event-based model predictive control (MPC), to effec-
tively compute the optimal reduced-order trajectories for the interconnected LIP dynam-
ics. The lower level of the proposed algorithm employs distributed nonlinear controllers
to reduce the gap between reduced- and full-order complex models of cooperative loco-
motion. In particular, the distributed controllers are developed based on quadratic pro-
graming (QP) and virtual constraints to impose the full-order dynamical models of each
agent to asymptotically track the reduced-order trajectories while having feasible contact
forces at the leg ends. The paper numerically investigates the effectiveness of the pro-
posed control algorithm via full-order simulations of a team of collaborative quadrupe-
dal robots, each with a total of 22 degrees-of-freedom. The paper finally investigates the
robustness of the proposed control algorithm against uncertainties in the payload mass
and changes in the ground height profile. Numerical studies show that the cooperative
agents can transport unknown payloads whose masses are up to 57%, 97%, and 137% of
a single agent’s mass with a team of two, three, and four legged robots.
[DOI: 10.1115/1.4052917]

1 Introduction

Legged robots can form collaborative robot (corobot) teams
that assist humans in labor-intensive tasks such as construction,
manufacturing, and assembly. The evolution of legged robots that
cooperatively manipulate/transport objects can be described by
high-dimensional and inherently unstable complex systems.
Although powerful computational approaches have allowed the
deployment of distributed control algorithms for complex robot
systems, state-of-the-art techniques are tailored to the control of
multirobot systems (MRSs) (see, e.g., Refs. [1] and [2]) composed
of collaborative robotic arms and multifingered hands [3], aerial
vehicles [4,5], and ground vehicles [6–8], but not sophisticated
legged machines that cooperatively transport objects.

The overarching goal of this paper is to develop a hierarchical
computational algorithm to enable the real-time planning and con-
trol of cooperative locomotion for multi-agent legged robotic sys-
tems that carry objects. The higher level of the proposed
algorithm employs a supervisory control, based on event-based
model predictive control (MPC), to generate optimal trajectories
for individual agents. In particular, the MPC is formulated for the
optimal control of an interconnected network of holonomically
constrained reduced-order systems, developed based on linear
inverted pendulum (LIP) models, subject to having feasible indi-
vidual ground reaction forces (GRFs). To reduce the gap between
the network of reduced- and full-order complex models of cooper-
ative locomotion, distributed nonlinear controllers, based on quad-
ratic programing (QP) and virtual constraints, are implemented at

the lower level of the proposed algorithm to impose the full-order
dynamics of each agent to asymptotically track the optimal trajec-
tories while keeping the GRFs at all contacting leg ends in the
friction cone. It is shown that the proposed control approach can
generate and robustly stabilize cooperative locomotion patterns
for multi-agent quadrupedal robotic systems in the presence of
model uncertainties arising from unknown payloads and ground
height variations (see Fig. 1).

1.1 Related Work, Motivation, and Challenges. Gait plan-
ning for complex dynamical models of cooperative locomotion is

Fig. 1 Illustration of a team of two Vision 60 robots augmented
with Kinova arms for cooperative locomotion. Full-order
dynamical models of these robots are used for the numerical
simulation.
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a significant challenge arising from the hybrid nature of models,
nonlinearities, high dimensionality, and strong interactions
amongst the agents. Hybrid systems theory has provided powerful
techniques for modeling and analyzing dynamic locomotion of
single legged machines [9–18]. Advanced nonlinear control algo-
rithms have been developed to address the hybrid nature of loco-
motion such as hybrid reduction [19], controlled symmetries [15],
transverse linearization [16], and hybrid zero dynamics (HZD)
[10,20]. The HZD approach considers a set of kinematic con-
straints, referred to as virtual constraints, to coordinate the links of
the robots during locomotion. Virtual constraints are asymptoti-
cally imposed by the action of a feedback control law (e.g.,
input–output (I-O) linearization [21]) and have been validated for
stable locomotion of bipedal robots [10,11,22–25] and powered
prosthetic legs [26,27]. The HZD approach formulates the gait
planning problem as an offline nonlinear programing problem
[24] which cannot address the real-time planning for cooperative
locomotion.

Various powerful MPC-based approaches have been introduced
for the real-time planning and robust control of solitary legged
machines, including the LIP-based approach [28–34], single rigid
body dynamics approach [35–37], nonlinear MPC [38], policy-
regularized MPC [39], and QP-based whole-body control [40,41].
Quadrupedal robots that cooperatively transport an object can be
described by a set of legged agents that are coupled to each other
and the object via a set of holonomic constraints. The challenge is
to develop real-time optimal control algorithms for such a com-
plex and inherently unstable robotic system that control locomo-
tion with many degrees-of-freedom (DOFs). Existing MPC
approaches for legged robots are typically formulated as QPs to
be solved every time sample—this makes the extension of these
MPC-based techniques for composite mechanical systems arising
from cooperative locomotion of quadrupedal robots computation-
ally intensive. We would like to deploy innovative MPC techni-
ques in the context of networked systems that can reduce the
computational burden to allow real-time planning and coordina-
tion of sophisticated corobot teams. One approach to tackle this
challenge is through the development of event-based MPC techni-
ques [33,42], in which MPC problems are solved at particular
time samples, referred to as events (e.g., beginning of each
domain), rather than every time sample. Our previous work [33]
presented a nonlinear control approach, based on event-based
MPC, for the robust and stable locomotion of single quadrupedal

robots. We would like to extend this framework for the motion
control of cooperative locomotion.

1.2 Objectives and Contributions. The objectives and con-
tributions of this paper are as follows. We present an innovative
and interconnected network of reduced-order models to address
the real-time planning for cooperative locomotion of quadrupedal
robots that carry an object. The proposed network of reduced-
order models is nonlinear and developed based on the intercon-
nection of LIP models subject to holonomic constraints. We then
present a hierarchical nonlinear computational algorithm for the
motion control of legged corobots (see Fig. 2). At the higher level
of the control scheme, we present a supervisory predictive control
algorithm, based on event-based MPC, to compute the optimal
center of mass (COM) trajectories for the network of reduced-
order models subject to the feasibility of the individual net GRFs.
To address the nonlinearity of the interconnected reduced-order
models and to formulate a convex optimal control problem, the
event-based MPC is employed using the linearized dynamics at
the beginning of each continuous-time domain (i.e., event sam-
ples). At the lower level of the control scheme, distributed nonlin-
ear controllers, based on QP and virtual constraints, are developed
to impose the full-order dynamical model of each agent to asymp-
totically track the prescribed optimal COM trajectories while
keeping all individual GRFs at the contacting leg ends feasible.
To demonstrate the effectiveness of the proposed control algo-
rithm, a series of extensive and full-order numerical simulations is
presented for cooperative locomotion of a team of two, three, and
four advanced quadrupedal robots, Vision 60, augmented with
Kinova arms, each with a total of 22DOFs (see Fig. 1). It is
numerically shown that the proposed control scheme can generate
and robustly stabilize locomotion patterns for a team of quadrupe-
dal robots that carry different objects in the presence of model
uncertainties in terms of payloads and unknown ground height
variation. The numerical studies show that the agents can coopera-
tively transport unknown payloads whose masses are up to 57%,
97%, and 137% of a singles agent’s mass with a team of two,
three, and four legged corobots.

The approach of this paper completely differs from Ref. [43] in
that this paper presents an innovative network of reduced-order
models together with a supervisory MPC for the real-time plan-
ning of cooperative locomotion, whereas [43] only studied the

Fig. 2 Overview of the proposed hierarchical nonlinear control algorithm for cooperative locomotion of legged
agents subject to holonomic constraints. The figure also illustrates the concept of the interconnected LIP
dynamics.
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stabilization of preplanned and offline trajectories. In addition, the
approach of Ref. [43] studied the locomotion of two agents via
the hybrid systems formulation that cannot be easily extended to
the locomotion of multiple agents. We finally remark that the
objective of this paper is to study the development of hierarchical
control algorithms for stable and robust cooperative locomotion
subject to the holonomic constraints that can arise from coopera-
tive transportation problems. Hence, the main focus of the paper
is on cooperative locomotion, and robotic manipulators are being
used toward this goal.

2 Interconnected Linear Inverted Pendulum

Dynamics

The objective of this section is to derive an interconnected net-
work of reduced-order models for the cooperative locomotion of
N � 2 legged corobots that carry an object. The reduced-order
network, referred to as the interconnected LIP dynamics, will be
utilized for the real-time trajectory planning in Sec. 3. Here, we
consider an open path graph for the network of LIP dynamics with
N vertices and N – 1 edges. In particular, all inner vertices have
degree 2 except the end vertices 1 and N that have degree 1 (see
Fig. 2). The vertices of the graph represent the agents, and the
edges represent interconnection between agents. In our notation,
NðiÞ denotes the set of all agents that are adjacent to the agent
i 2 V :¼ f1;…;Ng.

Remark 1 (Path graphs). The reason for the assumption of open
path graph is to simplify the presentation of the interaction forces
and the interconnected LIP dynamics in Theorem 1. This also
allows us to easily present the proposed control scheme.

We consider the following LIP dynamics [28] for the locomo-
tion of the agent i 2 V:

€r i ¼
g

‘
ri � uið Þ þ

1

m
fi (1)

where ri :¼ colðrx
i ; r

y
i Þ 2 R2 represents the Cartesian coordinates

of the COM of the agent i in the horizontal plane with respect to
the inertial world frame, ‘ denotes the height of the COM, g is the
gravitational constant, ui :¼ colðux

i ; u
y
i Þ 2 R2 represents the Car-

tesian coordinates of the center of pressure (COP), fi 2 R2

denotes the external force on the COM of the agent i, and m is the
total mass of the agent

ASSUMPTION 1 (Rigidity). We suppose that there are holonomic
constraints amongst the adjacent agents as follows:

jjri � rjjj2 :¼ ðri � rjÞ>ðri � rjÞ ¼ cij (2)

for all i 2 V and j 2 NðiÞ and some constants cij> 0. The forces
between agents i and j are further assumed to be
fij ¼ �fji ¼ ðri � rjÞ kij, where kij denotes the Lagrange multi-
pliers with the symmetry property kij ¼ kji (see Fig. 2).

We remark that from Assumption 1 as well as the symmetry
condition, there are N – 1 independent Lagrange multipliers kij to
be determined. For future purposes, we show these independent
Lagrange multipliers as a vector k :¼ colðkij j i ¼ 1;…;
N � 1; j ¼ iþ 1Þ 2 RN�1, where “col” represents the column
operator. Throughout this paper, the boldface variables will corre-
spond to the global variables of the interconnected LIP network.

Remark 2. Assumption 1 considers the holonomic constraints
amongst the COMs of the adjacent agents as the LIP dynamics
cannot address the moments about the COM. In particular, the
addition of robotic manipulators to the reduced-order model can
result in moments around the COM generated by the arms. Hence,
the interconnected LIP dynamics do not include the manipulator
models. However, we remark that the full-order dynamical model
of cooperative locomotion in Sec. 5 will consider the holonomic
constraints amongst the manipulators’ end effectors (EEs). We
further assume that the EE’s motion with respect to the body is
almost static. The numerical results of Sec. 5 will show the

adequacy and validity of this assumption for the development of
the supervisory MPC. The numerical results will also show that
the proposed control algorithms can bridge the gap between the
developed interconnected LIP model and the detailed full-order
model. Section 6.2 will discuss this assumption and the results
with more details.

Using this assumption, the interconnected network of LIP
dynamics can be expressed as

€r i ¼
g

‘
ri � uið Þ þ

1

m

X
j2N ið Þ

ri � rjð Þ kij; i 2 V (3)

Subject to the holonomic constraints (2). For future purposes,
we define the augmented position, velocity, and control input vec-
tors as r :¼ colðri j i 2 VÞ 2 R2N ; _r :¼ colð _ri j i 2 VÞ 2 R2N , and
u :¼ colðui j i 2 VÞ 2 R2N . By differentiating the holonomic con-
straint (2) twice along the trajectories of Eq. (3), we get

ðri � rjÞ>ð€r i � €r jÞ þ jj _r i � _r jjj2 ¼ 0 (4)

Combining Eqs. (3) and (4) then results in

g

‘
jjri � rjjj2 �

g

‘
ri � rjð Þ> ui � ujð Þ þ jj _r i � _rjjj2

þ
ri � rjð Þ>

m

X
l2N ið Þ

ri � rlð Þ kil �
X

k2N jð Þ
rj � rkð Þ kjk

( )
¼ 0

for all i ¼ 1;…;N � 1 and j ¼ iþ 1 which can be written in a
compact form to solve for the Lagrange multipliers k, i.e.,

KNðrÞ k ¼ bðr; _r ; uÞ (5)

Here, KN 2 RðN�1Þ�ðN�1Þ is a symmetric matrix as follows:

2jje12jj2 �e>12e23 0 0 � � � 0

�e>23e12 2jje23jj2 �e>23e34 0 � � � 0

0 �e>34e23 2jje34jj2 �e>34e45 � � � 0

� � � � . .
.

�

0 0 0 0 � � � 2jjeN�1;N jj2

2
6666666666664

3
7777777777775

in which eij :¼ ri � rj 2 R2. In addition, b :¼ colðbi j i ¼ 1;…;
N � 1Þ 2 RN�1, where bi :¼ mg

‘ ðri � rjÞ>ðui � ujÞ � mg
‘ jjri �

rjjj2 � mjj _r i � _r jjj2 with j ¼ iþ 1. In what follows, we study the
conditions under which there is a unique solution k for the alge-
braic Eq. (5).

THEOREM 1 (Uniqueness of k). Suppose that N � 2 and Assump-
tion 1 is met. Then, the matrix KNðrÞ is positive definite if ri 6¼ rj

(or, equivalently, eij 6¼ 0) for all i 2 V and j 2 NðiÞ.
Proof. See Appendix A.1. �
Using Theorem 1, the Lagrange multipliers can be solved as

k ¼ K�1
N ðrÞ bðr; _r ; uÞ which in combination with Eq. (3) results in

the following compact and nonlinear equations of motion:

€r ¼ g

‘
r � uð Þ þ 1

m
L kð Þ r (6)

where LðkÞ :¼ ½Lij� 2 R2N�2N is a weighted Laplacian matrix
with the blocks Lij 2 R2�2 for 1 � i; j � N such that Lii :¼
ð
P

k2N ðiÞ kikÞ I2; Lij :¼ �kij I2 for j 2 NðiÞ, and Lij :¼ 02 for
j 62 N ðiÞ. Here, I2 and 02 denote the identity and zero matrices of
order two, respectively. We remark that according to the construc-
tion procedure, the state manifold for the interconnected LIP
dynamics can be expressed as
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M :¼ fðr; _rÞ j jjeijjj2 ¼ cij; e>ij _eij ¼ 0; i 2 V; j 2 NðiÞg

for some cij> 0 which is invariant under the flow of Eq. (6). In
addition, we can show thatM is a 2N þ 2-dimensional embedded
submanifold of R4N .

Example 1. For the case of two agents, the interconnected LIP
dynamics can be expressed as the following nonlinear system:

€r1 ¼
g

‘
r1 � u1ð Þ �

g

2‘
r1 � r2ð Þ

þ
g r1 � r2ð Þ r1 � r2ð Þ> u1 � u2ð Þ

2‘ jjr1 � r2jj2
�

r1 � r2ð Þjj _r1 � _r2jj2

2jjr1 � r2jj2

€r2 ¼
g

‘
r2 � u2ð Þ þ

g

2‘
r1 � r2ð Þ

�
g r1 � r2ð Þ r1 � r2ð Þ> u1 � u2ð Þ

2‘ jjr1 � r2jj2
þ

r1 � r2ð Þjj _r1 � _r2jj2

2jjr1 � r2jj2

By defining the augmented state vector x :¼ colðr; _rÞ 2 R4N ,
the nonlinear state equation for the coupled LIP dynamics can be
expressed as _x ¼ f ðx;uÞ, where f :M�R2N ! TM is differen-
tiable and TM denotes the tangent bundle of the manifoldM. In
addition, the continuous-time dynamics can be discretized using
the Euler approach as follows:

x½k þ 1� ¼ x½k� þ Ts f ðx½k�; u½k�Þ
¼: Fðx½k�;u½k�Þ

(7)

in which Ts denotes the sampling time and x½k� and u½k� represent
the state vector and control inputs at the time sample
k 2 Z�0 :¼ f0; 1;…g, respectively.

3 Supervisory Predictive Control

The objective of this section is to develop a supervisory control
algorithm, based on the interconnected LIP dynamics, MPC, and

convex optimization, to effectively plan and coordinate multi-
agent legged robots in real-time.

Models of legged locomotion are hybrid and can be illustrated
as directed graphs. In this representation, continuous-time dynam-
ics are represented by vertices of the graph to describe the evolu-
tion of the system by the Lagrangian dynamics. The edges of the
graph then represent the instantaneous and discrete-time transi-
tions amongst the continuous-time dynamics to model the possible
and abrupt changes in the state vector according to the rigid
impacts of the leg ends with the environment. In this paper, we
consider a general locomotion (walking) pattern for the quadrupe-
dal agents with start and stop conditions as a directed graph Gw ¼
ðVw; EwÞ (see Fig. 3), where the vertices set Vw represents the
continuous-time domains (e.g., double-, triple-, and quadruple-
contact domains) and edges set Ew � Vw � Vw denotes the
discrete-time transitions (e.g., impacts and take-offs) (see
Fig. 3(b)). We further suppose that there are md � 1 continuous-
time domains and each continuous-time domain consists of ng �
1 grid points (i.e., time samples) (see Fig. 3(a)). In this paper, we
consider a general aperiodic locomotion pattern. Hence, domains
are enumerated to show the successive continuous-time domains
from start to stop. Consequently, there can be two distinct
domains with the same stance legs (e.g., domains 2 and md � 1 in
Fig. 3(b)). The domain indicator function is then defined as f :
Z�0 ! f1; 2;…;mdg by fðkÞ :¼ b k

ng
c þ 1 for 0 � k < md ng and

fðkÞ :¼ md for k � md ng to assign the domain index for every
time sample. Here, b�c represents the floor function.

For the feasibility of the interconnected LIP model, we assume
that all local control inputs (i.e., COPs) ui½k� for i 2 V lie in a
time-varying support polygon which is defined as the convex hull
of the contacting points with the ground. That is

ui½k� 2 U i
fðkÞ; 8k 2 Z�0; 8i 2 V (8)

in which U i
fðkÞ � R2 is the corresponding support polygon for the

agent i in the domain fðkÞ (see Fig. 2). In addition, the net GRF

Fig. 3 (a) Illustration of the proposed supervisory predictive control. Here, agents share their actual and
reduced-order states with the higher-level supervisory control. The supervisory control then optimizes for the
COM motions subject to the interconnected LIP dynamics and feasibility conditions. (b) Illustration of the
directed cycle to represent the locomotion pattern of each agent with different continuous-time domains. Snap-
shot of the cooperative locomotion highlights different domains for each agent.
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acting on the agent i must be in the friction cone. These friction
cone conditions together with the dynamics (6) can be expressed
as the following nonlinear inequality constraints:

cineqðx½k�; u½k�Þ � 0; 8k 2 Z�0 (9)

Problem 1 (Real-time planning of agents). Let us consider the
locomotion pattern Gw with a given set of desired footholds
encoded in the convex hulls (i.e., support polygons) U i

fðkÞ for all
agents i 2 V. For a given initial state x0 2M and final state
xf 2M, the planning problem consists of finding an optimal aug-
mented control input u½k� in real-time that steers the interconnected
LIP dynamics (7) from x0 to xf subject to the constraints (8) and
(9).

Remark 3 (Computation of footholds). We remark that the
desired footholds are computed at the beginning of the locomotion
and are used during the locomotion to form the support polygons
in Problem 1. One way to compute the desired footholds is as fol-
lows. We can first consider a straight line connecting the initial
position of each agent to its final position in the horizontal plane.
We then generate a sequence of footholds along this line via a
proper step length.

To address Problem 1, we consider a supervisory predictive
control that has access to the global positions (i.e., reduced-order
sates) of all agents (i.e., ri for i 2 V) via a direct communication
network [1]. We then extend the event-based MPC approach of
[33]—that generates optimal trajectories for locomotion of a sin-
gle agent—to address the motion planning problem for coopera-
tive locomotion of multi-agent robots. In the proposed approach,
the supervisory predictive control is solved at the event samples,
taken at the beginning of continuous-time domains, to reduce the
computational burden of the networked system.

Remark 4 (Supervisory MPC). The supervisory predictive con-
trol can be either solved on one of the agents’ onboard computers
or all agents’ computers. The first approach would result in a het-
erogeneous team with a leader, and the latter one would result in a
homogeneous team. In the first approach, the supervisory MPC is
solved at the beginning of each continuous-time domain for the
leader. In contrast, in the second approach, the MPC is solved at
the beginning of continuous-time domains for each agent.
Although the first approach generally requires less computation
burden than the second one, our numerical results show that both
of these techniques are computationally tractable for cooperative
locomotion of a team of legged robots with up to four agents. In
particular, the computation time for the supervisory MPC in these
techniques takes less than 1 (ms) (see Sec. 5 for details).

The nonlinear interconnected LIP dynamics in Eq. (7) are then
linearized at the event samples to formulate a convex optimization
problem. More specifically, we consider an affine approximation
of Eq. (7) at the event sample k ¼ l ng for some integer l � 0 to
estimate the future states as follows:

xkþjþ1jk ¼ A xkþjjk þ B ukþjjk þ d; j ¼ 0; 1;…;Nh � 1

xkjk ¼ x½k�
(10)

where Nh ¼ nh ng denotes the control horizon for some positive
integer nh � 1; xkþjjk represents the estimated state of the inter-
connected LIP network model at time kþ j predicted at time k,
and ukþjjk denotes the input of the LIP network (i.e., COPs) at
time kþ j computed at time k. In addition, the Jacobian matrices
and affine term are computed from Eq. (7) and updated at every
event sample according to A :¼ @F

@x ðx½k�; u½k � 1�Þ
2 R4N�4N ; B :¼ @F

@u
ðx½k�;u½k � 1�Þ 2 R4N�2N , and d :¼ Fðx½k�;

u½k � 1�Þ � A x½k� � B u½k � 1� 2 R4N . An analogous technique
can be used to estimate (9) as the following affine inequality:

U xkþjjk þW ukþjjk þ g � 0; j ¼ 0; 1;…;Nh � 1 (11)

We then formulate a convex MPC problem over the control
horizon Nh to steer (10) from x0 2M to xf 2M subject to Eqs.
(8) and (11), that is

min
UkþNh�1jk

pðxkþNh jkÞ þ
XNh�1

j¼0

‘ðxkþjjk; ukþjjkÞ (12)

subject to Dynamics (10) and in equalities (8) and (11),
where UkþNh�1jk :¼ colðukjk;…; ukþNh�1jkÞ 2 R2NNh . Here, the

terminal and stage cost functions are given by pðxkþNhjkÞ :¼
jjxkþNh jk � xdes

kþNhjkjj
2
P and ‘ðxkþjjk;ukþjjkÞ :¼ jjxkþjjk � xdes

kþjjkjj
2
Q

þjjukþjjkjj2R, respectively, for some positive definite matrices

P 2 R4N�4N ; Q 2 R4N�4N , and R 2 R2N�2N . In addition, xdes
kþjjk

denotes a desired state trajectory and jjzjj2P :¼ z>P z. We remark
that the supervisory event-based MPC can be translated into QP.
Let ðx?kþjjk;u

?
kþjjkÞ denote the optimal solution over the control

horizon. Then the optimal COM trajectory of the agents over one
continuous-time domain (i.e., x?kþjjk for j ¼ 0;…; ng � 1) will be

utilized as the reference trajectory to be tracked by the low-level
distributed controllers in Sec. 4. The MPC problem will be solved
again at the beginning of the next continuous-time domain.

4 Distributed Controllers

The objective of this section is to present the low-level distrib-
uted controllers to impose the full-order dynamical models of
individual agents to asymptotically track the optimal reduced-
order trajectories prescribed by the supervisory predictive control
while having feasible contact forces. Here, we extend the virtual
constraints controller of Ref. [33] for the development of distrib-
uted controllers for multi-agent systems. More specifically, the
distributed low-level controller formulates the I-O linearization
problem as a QP that addresses the feasibility of each agent’s indi-
vidual GRFs at the contacting leg ends while tracking the optimal
COM trajectories for cooperative locomotion and desired swing
leg path of each agent. We remark that, unlike the supervisory
MPC, the distributed low-level controller only considers the full-
order dynamical model of each agent. Hence, it does not require
the full state measurements of the other agents.

In this paper, each legged agent is assumed to consist of the 18-
DOF quadrupedal robot Vision 60, manufactured by Ghost
Robotics (Philadelphia, PA),2 plus a 4DOF Kinova arm (see
Fig. 4) for the locomotion and manipulation purposes. The total
mass of this augmented agent is 35 (kg). The DOFs on Vision 60
are composed of six underactuated DOFs for the absolute position
and orientation of the robot plus 12 actuated DOFs associated
with the legs. More specifically, each leg of the robot consists of
six actuated DOFs for the hip roll, hip pitch, and knee joints. All
DOFs of the Kinova arm are further assumed to be actuated. The
detailed view of the joint arrangement and DOFs of the robot are
represented in Fig. 4. In our notation, the local configuration vec-
tor and local control inputs (i.e., joint-level torques) for the agent
i 2 V are denoted by qi :¼ colðptorso;i;/torso;i; qbody;iÞ 2 R22 and
si 2 R16, respectively, where ptorso;i 2 R3 and /torso;i 2 R3

describe the absolute position and orientation of the torso for the
agent i with respect to the inertial frame (see Fig. 4). The remain-
ing portion, qbody;i 2 R16 then represents the body variables of the
robot that form the shape of the robot. Finally, let zi ¼
colðqi; _qiÞ 2 R44 and Fi 2 R3‘c;i denote the local full-order states
and contact forces at the leg ends of the agent. Here, ‘c;i represents
the number of contacting legs with the ground.

We now define the following local holonomic outputs to be
regulated for the motion control of the agent i:

yiðzi; tÞ :¼ h0ðqiÞ � hd;iðtÞ (13)

where h0ðqiÞ represents the set of holonomic quantities to be con-
trolled, referred to as the controlled variables, and hd;iðtÞ denotes
the desired evolution of the controlled variables. The controlled
variables, h0ðqiÞ, are chosen as the orientation of the agent (i.e.,

2https://www.ghostrobotics.io/
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roll, pitch, and yaw) together with its COM position, the Cartesian
coordinates of the swing leg ends, and the Cartesian coordinates
of the manipulator’s EE in the inertial world frame. The desired
evolution of the COM position in hd;iðtÞ is defined as a B�ezier
polynomial [44] that passes through the discrete and optimal
reduced-order trajectory generated by the supervisory predictive
control. In particular, we consider a B�ezier polynomial whose
coefficients are solved via least-squares at the beginning of each
domain such that the polynomial has the best fit to the optimal
COM trajectory of the agent i for the current domain. For the
swing leg ends, hd;iðtÞ is taken as a B�ezier foot trajectory in the
task space starting from the previous foothold with zero velocity
and ending at the next preplanned foothold with zero velocity.
Finally, the desired evolution for the EE’s Cartesian coordinates is
chosen as the desired COM trajectory plus a constant vector repre-
senting the EE’s position with respect to the torso.

To compute the local control torques si, we consider the full-
order and floating-base dynamics of the agent i without consider-
ing the interaction forces arising from manipulation. Although the
low-level distributed controllers do not consider the interaction
forces amongst the EE and objects for simplifying the controller
synthesis, the full-order simulation models of the cooperative
locomotion in Sec. 5 will consider these interacting forces to illus-
trate the validity of this assumption and robustness of the pro-
posed control algorithms. We now consider the following local
dynamics for the controller synthesis:

DiðqiÞ €qi þ Hiðqi; _qiÞ ¼ !isi þ J>c;iðqiÞFi (14)

where DiðqiÞ 2 R22�22 denotes the positive definite mass-inertia
matrix of the agent i, Hiðqi; _qiÞ 2 R22 represents the Coriolis, cen-
trifugal, and gravitational forces of the agent i, and !i 2 R22�16 is
the input distribution matrix. Furthermore, Jc;iðqiÞ 2 R3‘c;i�22 rep-
resents the contact Jacobian matrix. For future purposes, the local
dynamics (14) can be written in the state-space form as follows:

_zi ¼
_qi

�D�1
i Hi

" #
þ

0

D�1
i !i

" #
si þ

0

D�1
i J>c;i

" #
Fi

¼: fiðziÞ þ giðziÞ si þ wiðziÞFi

(15)

Differentiating the local output yi in Eq. (13) along the full-order
dynamics of the agent i described in Eq. (15) results in the follow-
ing output dynamics:

€yi ¼ Lgi
Lfi yi zi; tð Þ si þ Lwi

Lfi yi zi; tð ÞFi

þ L2
fi
y zi; tð Þ þ

@2yi

@t2
zi; tð Þ

¼ �KP yi � KD _yi (16)

where Lgi
Lfi yi; Lwi

Lfi yi, and L2
fi
yi are Lie derivatives that are used

for I–O linearization [21], and KP and KD are positive definite
matrices. Closed form expressions for the Lie derivatives can be
found in Appendix A.2. In addition, the local controller assumes a
rigid contact model between the stance leg ends of the agent and
the ground. In particular, the acceleration of the stance leg ends is
assumed to be zero which can be expressed as

€pi ¼ Jc;i qið Þ €qi þ
@

@q
Jc;i qið Þ _qi

� �
_qi ¼ 0 (17)

where pi denotes the Cartesian coordinates of the stance leg ends.
The condition in Eq. (17) along with the local dynamics (14)
yields the following affine condition in ðsi;FiÞ:

€pi ¼ Lgi
Lfi piðziÞ si þ Lwi

Lfi piðziÞFi þ L2
fi
piðziÞ ¼ 0 (18)

The closed-form of the Lie derivatives in Eq. (18) can be found in
Appendix A.2. In order to solve for the local torques si, we are
interested in solving for ðsi;FiÞ subject to Eqs. (16) and (18) such
that (1) the contact forces belong to the friction cone (i.e., Fi 2 FC)
while having feasible torques (i.e., smin � s � smax), and (2) the
local torques are minimum two-norm. Hence, we setup the follow-
ing set of distributed real-time QPs that can be solved at 1 kHz:

min
si;Fi;dð Þ

1

2
jjsijj2 þ

x
2
jjdjj2

s:t: Lgi
Lfi yi si þ Lwi

Lfi yi Fi þ L2
fi
yi þ

@2yi

@t2
þ d

¼ �KP yi � KD _yi

Lgi
Lfi pi si þ Lwi

Lfi pi Fi þ L2
fi
pi ¼ 0

Fi 2 FC; smin � s � smax

(19)

Here, d is a defect variable added to the output dynamics (16) to
guarantee the existence of a feasible solution in two different sce-
narios. (1) If the coefficient matrix loses rank at particular config-
urations, there may not be a pair of control torques and GRFs, i.e.,
ðsi;FiÞ, that satisfies (16) and (18). To tackle this issue, we intro-
duce the defect variable d to make the equality constraints feasi-
ble. (2) If the torques and GRFs, i.e., ðsi;FiÞ, do not belong to the
admissible sets (i.e., the inequality constraints are violated), the
defect variable d can again help us to find a feasible solution. To
reduce the effect of the defect variable d on the output dynamics,
we minimize its two-norm via a large weighting factor in the cost
function. More specifically, the cost function (19) tries to mini-
mize a weighted sum of the two-norms of the local torques and
the defect variable, where x > 0 is the weighting factor. We
remark that using the defect variable d, the output dynamics
become €yi þ KD _yi þ KP yi ¼ �dðtÞ, which is input-to-state stable
[45]. Hence, if dðtÞ remains bounded, the output profile y(t) will
be also bounded. This will be analyzed more in the numerical sim-
ulations of Sec. 5. The optimal solutions of these QPs are finally
denoted by si ¼ Ciðt; ziÞ for i 2 V and are employed as local
whole-body motion controllers.

5 Numerical Simulations

The objective of this section is to numerically verify the effec-
tiveness of the proposed hierarchical control algorithm for

Fig. 4 Illustration of 22DOFs for the full-order model of each
robotic agent. The agents are composed of the 18DOF quadru-
pedal robot Vision 60 plus the 4DOF Kinova arm. Six unactu-
ated DOFs are associated with the absolute position and
orientation of the torso frame with respect to an inertial world
frame. Each leg of the robot then consists of three actuated
joints as hip roll, hip pitch, and knee joints. The arm is finally
composed of four actuated joints. The axis of actuation for
actuated joints are shown with dashed lines, where the axes
with circle ends, axes with square ends, and axes with triangle
ends represent the x, y, and z directions, respectively.
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cooperative transportation of objects by a team of composite
robotic agents as shown in Fig. 1. We study both reduced- and
full-order coupled models of legged agents to show the stability of
locomotion patterns for the closed-loop system. We further inves-
tigate the robustness of the closed-loop system in the presence of
unknown payloads and uncertainty in the ground height profile.

• Control parameters: We consider the cooperative locomotion
of two and three agents with trot gaits including start and stop
domains. We have observed that for every sampling time Ts in
½60; 80� (ms) with ng¼ 4 grids per domain, the proposed control
scheme can stabilize the locomotion patterns. Here, we choose
Ts¼ 80 (ms). The control horizon for the supervisory predictive
control is taken as Nh ¼ nhng ¼ 4 which considers one domain
ahead. The other parameters for the supervisory predictive control
are tuned as P ¼ 103 I4N�4N ; Q ¼ I4N�4N ; R ¼ 10�10I2N�2N which
stabilize the cooperative motion. We have numerically observed
that for l 2 ½0:35; 0:55� (m), the robots behave safely, and the
joint-level torques remain in an acceptable range. For the purpose
of this paper, we choose l¼ 0.5 (m). The friction coefficient is
assumed to be l ¼ 0:6. The supervisory predictive control is
solved in an event-based manner (i.e., at the beginning of each
domain), that is approximately every ngTs ¼ 0:32 s. Analogous to
Ref. [33, Remark 1], we make use of a sparse QP structure to
effectively solve the MPC (12). We can show that the number of
decision variables for the sparse QP are 8NNh and 10NNh during
the middle and start/stop domains, respectively.

• Reduced-order coupled models: The evolution of the COM
and COP for forward trot gaits of the individual agents in the
interconnected LIP dynamics with N¼ 2 and N¼ 3 agents is
depicted in Figs. 5(a)–5(b) and Figs. 5(c)–5(e), respectively. Here
we make use of MATLAB for simulating the interconnected LIP
dynamics (7) subject to the holonomic constraints and the supervi-
sory predictive control (12). The initial configurations of the LIP
models are chosen as r1½0� ¼ ð0; 0Þ>ðmÞ and r2½0� ¼ ð0; 1Þ>ðmÞ
for N¼ 2 agents. Moreover, the initial positions of the LIP models
are taken as r1½0� ¼ ð0:2; 1Þ>ðmÞ; r2½0� ¼ ð0; 0Þ>ðmÞ, and r3½0� ¼
ð�0:5;�1Þ>ðmÞ for N¼ 3 agents. The step length for N¼ 2 and
N¼ 3 is chosen as ð0:05; 0ÞðmÞ and ð0:03; 0ÞðmÞ in R2, respec-
tively. The target points are taken as the geometric center of the
contact points in the last (i.e., stop) domain. Convergence to the
target points with different number of agents and after md¼ 20
continuous-time domains is clear.

• Full-order coupled models: Next, we study the full-order
complex model of cooperative locomotion with the proposed hier-
archical control algorithm over md¼ 50 domains in RaiSim [46].
Here, we assume massless bars to be carried by the EEs of Vision
60 agents augmented with Kinova arms as shown in Fig. 1. The
contact between the bar and the EE of Kinova arm is considered
as a point contact. Based on this contact condition, the wrench
between the object and EE of the arm only consists of the interac-
tion forces. The QP arising from the supervisory predictive con-
trol is solved with qpSWIFT [47]. The average computation time
of the higher-level QP on a laptop computer with an Intel

VR

CoreTM i7-10750H CPU 2.60 GHz and 16 GB RAM is 0.35 (ms)
and 0.59 (ms) for N¼ 2 and N¼ 3 agents, respectively. The dis-
tributed and low-level controllers of Eq. (19) are also solved with
qpSWIFT in 1 kHz and the weighting factor x is chosen as 107.

The numerical simulation results for the stable cooperative
locomotion of robots are provided in Figs. 6 and 7.
Figures 6(a)–6(d) and 7(a)–7(c) illustrate the evolution of the vir-
tual constraints and torque inputs for the individual agents during
collaborative and forward trot gaits with N¼ 2 and N¼ 3 agents,
respectively. Here, the speed of cooperative locomotion for two
and three agents is 0.15 (m/s) and 0.1 (m/s). From these figures,
we observe that the control inputs (joint-level torques) for all
agents are bounded. In addition, the outputs (i.e., virtual con-
straints) remain bounded during the cooperative locomotion. We
remark that Figs. 6 and 7 depict the first three components of the
virtual constraints (i.e., yx, yy, and yz) that represents the COM
tracking error. In particular, these figures show that the COM of
the full-order dynamical model of each agent tracks the optimal
and reduced-order COM trajectory generated by the supervisory
MPC. We also remark that the range of the control inputs (tor-
ques) is bounded between –5 (N�m) and 5 (N�m) by the low-level
nonlinear controller. Finally, the control inputs in Figs. 6 and 7
depict the motor torques before the gearbox system. Figure 8
depicts the evolution of the two-norm of the defect variable d for
the cooperative locomotion of two agents. From this figure, we
observe that d remains very small.

• Robustness analysis: To demonstrate the robustness of the
proposed control algorithm against uncertainties, we assume that
the mass of the bars between the adjacent agents’ EEs is increased
to 0.5 (kg) which is unknown for the controller. We further
assume that additional unknown payloads of 20 (kg), 34(kg), and

Fig. 5 COM and COP trajectories of the individual agents in the interconnected LIP dynamics (7) during forward trot gaits
with N 5 2 agents ((a) and (b)) and N 5 3 agents ((c)-(e)). Here, the optimal control inputs (i.e., COPs) are computed via the
supervisory predictive control (12). The sampling time for the supervisory predictive control in (a)–(e) are assumed to be
Ts 5 80 (ms).
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Fig. 6 Evolution of the virtual constraints and torque inputs in RaiSim for stable forward trot gait with N 5 2 agents. Subplots
(a) and (c) illustrate the evolution of outputs whereas subplots (b) and (d) depict the evolution of torque inputs. Here, yx, yy, yz

denote the virtual constraints corresponding to the absolute position (i.e., x, y, and z) of the agent. In addition, the subscript
“rFHip,” “pFHip,” and “FKnee” in the torque plots represent the roll torque of the front hip, pitch torque of the front hip, and
pitch torque of the front knee for the left side of the robot, respectively.

Fig. 8 Evolution of the two-norm of the defect variable d in RaiSim for N 5 2 agents. Sub-
plots illustrate the evolution for each agent.

Fig. 7 Plot of the virtual constraints and torque inputs in RaiSim for stable forward trot gait with N 5 3 agents. Subplots (a),
(b), and (c) correspond to the agents 1, 2, and 3, respectively. Subplots in the first and second rows correspond to the virtual
constraints and torque inputs of each agent, respectively.
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48(kg) are cooperatively transported by two, three, and four
agents on their torsos, respectively. Figures 9(a)–9(d) and Figs.
10(a)–10(c) depict the evolution of the virtual constraints and tor-
que inputs for N¼ 2 and N¼ 3 agents, respectively. Furthermore,
Figs. 11(a)–11(d) shows the evolution of the virtual constraints
and torque inputs for N¼ 4 agents. From these figures, it is
observed that the control inputs (i.e., torques) and outputs (i.e.,
virtual constraints) remain bounded during the cooperative loco-
motion with uncertainties. Hence, the proposed control algorithm
is capable of addressing the uncertainty arising from the payload
mass. To demonstrate the effectiveness of the proposed control
algorithms based on the interconnected LIP dynamics, we study
the same numerical simulations with the MPC control algorithm
of Ref. [33], in which the MPC is designed for individual robots
without considering the interconnected LIP dynamics. Snapshots
of the simulation results for cooperative locomotion of agents
with and without the proposed approach of this paper are depicted
in Figs. 12–14 to visualize the successes and failures. It is clear
that the agents cannot have robustly stable cooperative locomo-
tion while using their own MPC without considering the intercon-
nected LIP dynamics.

To show the robustness of the controller against the change in
the ground height profile, we study the cooperative locomotion
with N¼ 2 and N¼ 3 agents on uneven terrain. Here, we assume
that the ground height profile changes in a random manner in the
discrete set f61;62g (cm). The evolution of the virtual con-
straints and torque inputs together with the convergence of the
robots to the target points is depicted in Figs. 15 and 16 for two
and three agents, respectively. From the figures, it is observed that
the control inputs and outputs remain bounded during the coopera-
tive locomotion. Figures 17 and 18 depict the snapshots of the
cooperative locomotion patterns with the proposed control algo-
rithm. In addition, Figs. 17 and 18 compare the robustness and
performance of the proposed control solutions with the individual
MPC algorithms that do not consider the interaction forces for the
path planning. Animations of these simulations can be found
online.3

Fig. 9 Evolution of the virtual constraints and torque inputs in RaiSim for robust trot gait subject to a payload with N 5 2
agents. Subplots (a) and (c) illustrate the evolution of outputs whereas subplots (b) and (d) depict the evolution of torque
inputs.

Fig. 10 Plot of the virtual constraints and torque inputs in RaiSim for robust forward trot gait subject to a payload with N 5 3
agents. Subplots (a), (b), and (c) correspond to the agents 1, 2, and 3, respectively. Subplots in the first and second rows cor-
respond to the virtual constraints and torque inputs of each agent, respectively.

3https://youtu.be/8G1tniNW7jg
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6 Discussion

The numerical simulations of the reduced- and full-order mod-
els show the effectiveness of the proposed supervisory predictive
control algorithm in generating stable cooperative locomotion pat-
terns for multi-agent legged robots. The proposed hierarchical
control algorithm developed based on the interconnected LIP
dynamics allows robustly stable cooperative locomotion of multi-
agent legged robots subject to holonomic constraints whereas the

same legged machines cannot perform stable cooperative locomo-
tion patterns without the proposed algorithm. The objective of this
section is to analyze the results and to discuss the limitations of
the proposed control approach.

6.1 Robustness Against Uncertainties. The developed con-
trol algorithm enhances the level of robustness of the coupled full-
order dynamical systems against uncertainties arising from the

Fig. 11 Plot of the virtual constraints and torque inputs in RaiSim for robust trot gait subject to a payload with N 5 4 agents.
Subplots (a), (b), (c), and (d) correspond to the agent 1, 2, 3, and 4, respectively. Subplots in the first and second rows corre-
spond to the virtual constraints and torque inputs of each agent, respectively.

Fig. 13 (a) Snapshots of the unstable cooperative locomotion of three agents in RaiSim, in which each agent makes use of
its own MPC without considering the interaction forces between agents in the interconnected LIP dynamics. (b) Snapshots of
the robustly stable cooperative locomotion of three agents with the proposed supervisory predictive control in the presence
of a 32 (kg) payload.

Fig. 12 (a) Snapshots of the unstable cooperative locomotion of two agents with the individual predictive control of Ref. [33]
for agents in RaiSim. Here, each agent makes use of MPC for its own LIP dynamics without considering the interaction forces.
(b) Snapshots of the robustly stable cooperative locomotion of two agents with the proposed supervisory predictive control
in the presence of a 20 (kg) payload.
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unknown payloads as well as ground height profile changes.
Here, we make use of the number of steps that the robots can take
as metrics to evaluate the performance of the closed-loop system.
In particular, success occurs if the robots can reach the target

points in a specified number of domains, denoted by md.
Otherwise, it is a “failure (instability)” (e.g., the robots may fall
before reaching the target point or in a number of domains less
than md).

Fig. 14 (a) Snapshots of the unstable cooperative locomotion of four agents in RaiSim, in which each agent makes use of its
own MPC without considering the interaction forces in the interconnected LIP dynamics. (b) Snapshots of the robustly stable
cooperative locomotion of four agents with the proposed supervisory predictive control in the presence of a 48 (kg) payload.

Fig. 15 Evolution of virtual constraints and control inputs for locomotion of N 5 2 agents over an unknown terrain. Plots
show the inputs and outputs for individual agents.

Fig. 16 Evolution of virtual constraints and control inputs for locomotion of N 5 3 agents over an unknown terrain
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6.1.1 Unknown Payloads. For the payload simulations, we con-
sider cooperative locomotion over md¼ 50 continuous-time
domains. The objective is to evaluate the performance of coopera-
tive locomotion for a team of N 2 f2; 3; 4g agents. As described
in Sec. 5 and Figs. 9–14, the developed control algorithms allow
transporting unknown and much heavier objects than the maxi-
mum payload of a single agent (i.e., 12 (kg)). More specifically,
legged corobots can cooperatively carry the payloads and arrive at
the target positions in 50 domains. In contrast, the same intercon-
nected agents without the supervisory MPC cannot depart from the
initial positions due to the lack of consideration of the interaction
forces at the planner level. Our numerical studies show that the
cooperative system with the supervisory MPC algorithm can trans-
port 20 (kg), 34 (kg), and 48 (kg) with two, three, and four agents,
respectively. In other words, the agents can transport unknown pay-
loads whose masses are up to 57%, 97%, and 137% of a singles
agent’s mass with a team of two, three, and four legged corobots.

In addition to the payloads mentioned above on the agents’
torso, we consider payloads amongst the EEs in Sec. 5. The maxi-
mum weight for this load follows the Kinova arm’s payload limi-
tation (i.e., 0.5 (kg)). If we do not consider this limitation, our
numerical simulations show that the proposed control algorithm
can transport payloads of 4.5 (kg), 9 (kg), and 13.5 (kg) between
EEs with a team of two, three, and four corobots, respectively.

6.1.2 Varying Ground Height Profiles. For this set of simula-
tions, we study cooperative locomotion on uneven terrains over
md¼ 100 continuous-time domains. The objective is to evaluate
the performance of cooperative locomotion for a team of N 2
f2; 3g agents. Our numerical studies show that the proposed con-
trol algorithm can result in stable cooperative locomotion on
unknown terrains with ground height changes in the discrete set
f61;62g (cm). In particular, we simulated 100 different ground
height profiles with discontinuities within the above set. In all of
these simulations, the agents can successfully reach the final target

in the specified number of domains. In contrast, the interconnected
system without the supervisory MPC algorithm always fails on
these terrains.

6.2 Limitations and Analysis of Results
6.2.1 Linearization of the Interconnected Linear Inverted Pendu-
lum Dynamics. The interconnected LIP dynamics in Eq. (6) are
nonlinear. In order to formulate a convex optimal control prob-
lem, the supervisory control algorithm first linearizes the dynam-
ics, and then solves an MPC problem for the linearized dynamics.
Our numerical simulations in Fig. 5 depict the behavior of the
nonlinear dynamics subject to the supervisory MPC. From this fig-
ure, we observe that the optimal control problem, formulated for
the linearized dynamics, can stabilize the target points for the
original and interconnected LIP dynamics. In particular, the states
of the nonlinear system remain bounded and asymptotically con-
verge to the target points. We also remark that the supervisory
MPC does not use a constant Jacobian linearization for the entire
period of locomotion. Instead, it linearizes the dynamics around
the current point at the beginning of each continuous-time
domain. This makes the linearization error zero (i.e., resets it) at
the beginning of each domain, which in turn reduces the gap
between the states of the linearized and nonlinear dynamics. Fur-
thermore, the adequacy of this linearization technique is validated
in the full-order and complex models of cooperative locomotion.
In particular, the virtual constraint plots in Figs. 6 and 7 show that
the actual COM positions of the agents follow the desired COM
trajectories, based on the linearized dynamics, and the error
remains bounded. For future research, we will investigate nonlin-
ear MPC algorithms that can address the path planning problem
for the interconnected reduced-order models without linearization.

6.2.2 Limitations of the Reduced-order Linear Inverted Pendu-
lum Dynamics. In this paper, we make use of the LIP dynamics to
form the interconnected reduced-order network. One of the

Fig. 17 (a) Snapshots of the unstable cooperative locomotion of two agents over an unknown terrain, where each agent
makes use of its own MPC algorithm without considering the interaction forces. (b) Snapshots of the robustly stable coopera-
tive locomotion of two agents over the same terrain with the proposed supervisory predictive control based on the intercon-
nected LIP dynamics.

Fig. 18 (a) Snapshots of the unstable cooperative locomotion of three agents, where each agent makes use of its own MPC
algorithm without considering the interaction forces. (b) Snapshots of the robustly stable cooperative locomotion of three
agents over an unknown terrain with the proposed supervisory predictive control.
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limitations of the LIP model is that it cannot capture moments
about the COM. Hence, the arms model is not used in the inter-
connected LIP dynamics as the forces generated by the grippers
due to the holonomic constraints can create moments about the
COMs. Consequently, the holonomic constraints are represented
amongst the COMs in the reduced-order model. However, we
remark that the actual holonomic constraints are imposed between
the EEs in the full-order simulations of Sec. 5. In the numerical
simulations of Sec. 5, the arm joints are not locked. However, we
define some virtual constraints to control the EE’s Cartesian coor-
dinates in the task space. The desired trajectory for the EE’s posi-
tion is taken as the desired COM trajectory, generated by the
supervisory MPC, plus a constant value that represents the relative
motion of the EE with respect to the body. Hence, the EE’s rela-
tive motion with respect to the body becomes almost static. Con-
sequently, the process of initiating the grasping motion is not
addressed in this work. This can limit the general problem of
loco-manipulation during cooperative locomotion of multi-agent
robots. For future research, we will investigate alternative net-
works of reduced-order models that can be integrated with simple
arm models for manipulation purpose.

The alternative limitation of the LIP model is that it cannot
address dynamic locomotion. Furthermore, the height of the COM
is assumed to be constant in the LIP dynamics that can limit loco-
motion on rough terrains. This motivates the use of alternative
reduced-order models for future research. However, this may also
increase the complexity of the reduced-order models and the com-
putational burden of the supervisory MPC.

6.2.3 Considerations for the Real-World Implementation. The
proposed controllers of this work assume that the agents can share
their “reduced-order” states for the path planning purpose. In par-
ticular, the higher level of the control algorithm (i.e., supervisory
MPC) is assumed to have access to all the reduced-order states of
the agents (i.e., positions of the COMs). This can be realized via a
direct communication network [1]. However, the low-level control-
lers for the whole-body motion control are distributed and do not
require full-order state sharing. Our recent preliminary work [48,
Chap. 4] shows that the QP-based low-level controllers can stabilize
the locomotion of single-agent legged robots in practice. We will
experimentally evaluate the performance of the proposed controllers
for multi-agent legged robots in future work.

6.2.4. Dynamic Locomotion: The numerical simulations of this
paper have shown that the interconnected LIP dynamics and the
event-based supervisory MPC are sufficient to have robustly sta-
ble cooperative locomotion of legged robots. Although state-of-
the-art single quadrupedal robots have dynamic gaits, the nature
of single-agent locomotion and collaborative locomotion of multi-
agent systems for cooperative transportation is completely differ-
ent. Hence, the proposed control algorithms are validated for
cooperative locomotion with quasi-static gaits but not dynamic
gaits. The developed control approach would likely need to be
altered to address more agile locomotion patterns in complex
environments for future work.

7 Conclusion

This paper presented a hierarchical nonlinear control algorithm
for the real-time planning and control of legged robots that collab-
oratively carry objects. We presented an innovative network of
reduced-order models subject to holonomic constraints, referred
to as the interconnected LIP dynamics, to address the motion plan-
ning problem of cooperative locomotion. The properties of the
interconnected LIP dynamics were studied to formulate a supervi-
sory control as the higher-level planner in the proposed control
algorithm. The supervisory control is formulated as an event-
based predictive control to steer the interconnected LIP dynamics
subject to the feasibility of the net GRFs of individual agents. At
the lower level of the proposed control scheme, distributed nonlin-
ear controllers, based on QP and virtual constraints, were devel-
oped to impose the full-order dynamical model of each agent to

asymptotically track the optimal reduced-order trajectories, pre-
scribed by the supervisory predictive control, while having feasi-
ble contact forces at the leg ends. The effectiveness and
robustness of the proposed nonlinear control scheme were demon-
strated and investigated via full-order numerical simulations of a
team of two, three, and four collaborative quadrupedal robots,
each with a total of 22DOFs, while carrying different objects in
the presence of uncertainties.

In this work, we considered path graphs to describe the shape
of the objects to be carried. For future work, we will investigate
more sophisticated shapes and graphs subject to holonomic con-
straints. In addition, we will investigate the design of distributed
predictive controllers at the higher level of the proposed control
scheme to reduce the computational burden further. This work
also focused on the cooperative locomotion of legged robots, and
the manipulators were used to enable the agents’ holonomic con-
straints. Hence, the robotic manipulators’ grasping mechanism
was not studied. For future work, we will investigate alternative
networks of reduced-order models that can represent the interac-
tion wrenches for the loco-manipulation purpose. Furthermore,
we will extend the desired foothold planning framework to more
agile cooperative locomotion in aggressive environments.
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Nomenclature

A, B, d ¼ Jacobian linearization of the interconnected
LIP dynamics

Dð:Þ; Hð:Þ ¼ mass-inertia matrix, Coriolis, centrifugal, and
gravitational terms

F ¼ discrete-time dynamics for the network of
LIPs

Fi ¼ ground reaction forces on the agent i
Gw; Vw; Ew ¼ directed graph of the locomotion pattern, ver-

tices set, and edges set
h0ðqiÞ; hd;iðtÞ ¼ controlled variables for the agent i, and

desired evolution of the controlled variables
for the agent i

‘c;i ¼ number of the contacting legs with the ground
for the agent i

Lgi
Lfi ;Lwi

Lfi ;L
2
fi
¼ lie derivatives along the full-order floating-

base dynamics of the agent i
md, ng ¼ total number of continuous-time domains,

Number of grid points for each continuous-
time domain

N ¼ total number of agent
nh, Nh ¼ number of continuous-time domains to plan

over, control horizon
pi ¼ Cartesian coordinates of the stance leg ends of

the agent i
ptorso;i ¼ absolute position of the torso of the agent i

with respect to the inertial frame
qi ¼ configuration vector of the agent i consisting

of ptorso;i; /torso;i, and qbody;i

qbody;i ¼ shape (body) variables of the agent i
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ri, r ¼ Cartesian coordinates of the COM of the agent
i, Column vector consisting of all ris

Ts ¼ time step between grid points known as the
sampling time

ui, u ¼ Cartesian coordinates of the COP of the agent
i, Column vector consisting of all uis

V ¼ vertices set of the open path graph for the
interconnected LIP dynamics

x ¼ augmented state vector of the interconnected
LIP dynamics consisting of r and _r

yi ¼ local outputs of the agent i
zi ¼ full state variables of the agent i consisting of

qi and _qi

d ¼ defect variable for the low-level QP
fðkÞ; U i

fðkÞ ¼ current domain indicator function for the sam-
ple time k, and Convex hull of the contacting
points with the ground for the agent i

kij, k ¼ Lagrange multipliers between agents i and j,
Column vector consisting of independent kijs

si ¼ local torque inputs for the agent i
/torso;i ¼ absolute orientation of the torso of the agent i

with respect to the inertial frame
x ¼ weighting factor of the low-level QP

!ð:Þ; Jcð:Þ ¼ input distribution matrix, and Contact Jaco-
bian matrix

Appendix

A.1 Proof of Theorem 1. Let us take an arbitrary nonzero
vector a :¼ colða1;…; aN�1Þ. Then, a>KN a can be expanded as

a>KN a

¼ jje12jj2a2
1 þ jjeN�1;N jj2a2

N�1

þ
XN�2

k¼1

fjjek;kþ1jj2a2
k � 2e>k;kþ1ekþ1;kþ2 ak akþ1

þ jjekþ1;kþ2jj2a2
kþ1g

� jje12jj2a2
1 þ jjeN�1;N jj2a2

N�1

þ
XN�2

k¼1

fjjek;kþ1jj2a2
k � 2jjek;kþ1jjjjekþ1;kþ2jjjakjjakþ1j

þ jjekþ1;kþ2jj2a2
kþ1g

¼ jje12jj2a2
1 þ jjeN�1;N jj2a2

N�1

þ
XN�2

k¼1

ðjjek;kþ1jjjakj � jjekþ1;kþ2jjjakþ1jÞ2

> 0

(A1)

where in the fifth line, we have made use of the norm property,

that is, e>k;kþ1ekþ1;kþ2 ak akþ1 � jjek;kþ1jjjjekþ1;kþ2jjjakjjakþ1j. We

remark that the last result in Eq. (A1) is indeed positive. To clarify

this point, let us assume that the jakj ¼ jjekþ1;kþ2 jj
jjek;kþ1jj jakþ1j for all

k ¼ 1;…;N � 2. Then
PN�2

k¼1 ðjjek;kþ1jjjakj � jjekþ1;kþ2jjjakþ1jÞ2

¼ 0. However, because of the term jje12jj2a2
1 þ jjeN�1;N jj2a2

N�1,

the quadratic function a>KN a is strictly positive which completes
the proof. �

A.2 Closed Form Expressions for the Lie Derivatives

Lgi
Lfi yi zið Þ ¼

@h0 qið Þ
@qi

D�1
i qið Þ!i

Lwi
Lfi yi zið Þ ¼

@h0 qið Þ
@qi

D�1
i qið Þ J>c;i qið Þ

L2
fi
yi zið Þ ¼

@

@qi

@h0 qið Þ
@qi

_qi

� �
_qi �

@h0 qið Þ
@qi

D�1
i H qi; _qið Þ

Lgi
Lfi pi zið Þ ¼ Jc;i qið ÞD�1

i qið Þ!i

Lwi
Lfi pi zið Þ ¼ Jc;i qið ÞD�1

i qið Þ J>c;i qið Þ

L2
fi
pi zið Þ ¼

@

@qi
Jc;i qið Þ _qi

� �
_qi � Jc;i qið ÞD�1

i qið ÞH qi; _qið Þ
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