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Transfer learning (TL) is a machine learning (ML) tool where the knowledge, acquired
from a source domain, is “transferred” to perform a task in a target domain that has (to
some extent) a similar setting. The underlying concept does not require the ML method to
analyze a new problem from the beginning, and thereby both the learning time and the
amount of required target-domain data are reduced for training. An example is the
occurrence of thermoacoustic instability (TAI) in combustors, which may cause pressure
oscillations, possibly leading to flame extinction as well as undesirable vibrations in the
mechanical structures. In this situation, it is difficult to collect useful data from industrial
combustion systems, due to the transient nature of TAI phenomena. A feasible solution is
the usage of prototypes or emulators, like a Rijke tube, to produce largely similar phe-
nomena. This paper proposes symbolic time-series analysis (STSA)-based TL, where the
key idea is to develop a capability of discrimination between stable and unstable opera-
tions of a combustor, based on the time-series of pressure oscillations from a data source
that contains sufficient information, even if it is not the target regime, and then transfer
the learnt models to the target regime. The proposed STSA-based pattern classifier is
trained on a previously validated numerical model of a Rijke-tube apparatus. The knowl-
edge of this trained classifier is transferred to classify similar operational regimes in: (i)
an experimental Rijke-tube apparatus and (ii) an experimental combustion system appa-
ratus. Results of the proposed TL have been validated by comparison with those of two
shallow neural networks (NNs)-based TL and another NN having an additional long
short-term memory (LSTM) layer, which serve as benchmarks, in terms of classification
accuracy and computational complexity. [DOI: 10.1115/1.4050847]
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1 Introduction

Transfer learning (TL) is a machine learning (ML) tool that is
useful for data-driven assessment of operational conditions in a
target domain that does not have sufficient amount of labeled data
to train the underlying algorithms, while there exists another (to
some extent similar) source domain with adequate labeled data
that closely mimic similar operational scenarios in the target
domain [1,2]. Thus, by taking advantage of TL, various machine
learning algorithms (e.g., classifiers) can be trained on the avail-
able labeled data from a source domain and be deployed for ana-
lyzing a different target domain.

Transfer learning has gained momentum in the last two decades
and has found its applications in diverse fields that include medi-
cal imaging [3], drug discovery [4], natural language processing
[5], general game playing [6], estimation of remaining useful life
in mechanical structures [7], and many more [1,2]. Although
numerous applications of TL follow neural network (NN)-based
architectures, other concepts such as k-nearest neighbors and
Bayesian networks [8] have also been used for TL. Transfer learn-
ing methods are broadly categorized as:

(1) Inductive transfer learning: If the target domain is the same
as the source domain but the tasks are different, albeit being
related.

(2) Transductive transfer learning (TTL): If the tasks are
largely similar but the target domain is different from the
source domain.

The work, reported in this paper, deals with detection of ther-
moacoustic instability (TAI) in combustion systems, which
belongs to the second category (i.e., TTL) of transfer learning. In
combustion systems, TAI is an undesirable phenomenon, because
of the resulting pressure oscillations leading to flame extinction as
well as vibrations of mechanical structures [9]. The dynamics of
the underlying combustion process are inherently nonlinear [10]
due to the constructive interference between the heat release rate
(due to fuel burning) and the natural acoustics of the chamber
[11], which can occur at either fuel-rich or fuel-lean conditions,
depending on the construction and operation of the combustor.

From the perspectives of mechanical design and control, it is
important to understand whether the combustion system is in nor-
mal operation, or is undergoing TAI, or is transitioning into TAI
from normal operation. The data sources for TAI analysis are
available mostly from laboratory-scale experimental combustor
apparatuses, physical emulators (e.g., Rijke tubes [12])), and
numerical simulation models.

Much research efforts have been expended for classifying an
identified regime of operation in combustion processes as stable
or unstable, with data-driven methods being a good choice for
classification. To this end, various ML methods have been used to
identify the operational regimes of a combustor. For example, Sar-
kar et al. [13] used neural networks for regime identification from
dynamic flame image data. Bhattacharya et al. [14] used fast Fou-
rier transform (FFT)-based methods on pressure time-series data;
and Mondal et al. [15] used traditional ML methods such as
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hidden Markov models (HMM). Other methods (e.g., complex
networks [16,17], recurrence analysis [18,19], and adjoint meth-
ods [20,21]) have also been used, although they do not form part
of a “truly” data-driven approach.

Although neural networks are fast during testing, they usually
take a long time and a very large amount of data to train. Simi-
larly, HMM is also relatively slow to train and even to test. A
much faster alternative is probabilistic finite state automata
(PFSA) [22–24], which belongs to the class of symbolic time-
series analysis (STSA) [25]. The PFSA-based ML tools are fast to
train and test, and they require comparatively less training data
[26] than neural networks, while still providing good accuracy. In
another work, Bhattacharya et al. [27] have demonstrated that, for
TAI detection, PFSA-based methods perform with almost similar
accuracy as HMM, while PFSA is an order of magnitude (OOM)
faster in testing and 2 orders of magnitude faster in training as
compared to HMM.

Keeping in mind the good accuracy of PFSA-based detection
for the problem at hand (i.e., TAI detection), and the ease of the
algorithm implementation, the authors propose a PFSA/STSA-
based method of TL for TAI detection in different regimes. This
method would be very useful because, by transferring the
knowledge between systems, the PFSA could be trained on a sys-
tem with abundant data and subsequently use the acquired knowl-
edge without the need for training on a large amount of additional
data.

The paper has also made a significant modification of the stand-
ard PFSA [23,24] (called s-PFSA), as the projection-based PFSA
(called p-PFSA). This modification is based on the following two
facts that: (i) the left eigenvector, with respect to the unique unity
eigenvalue of the state probability transition matrix of an ergodic
PFSA, is the steady-state solution of the state probability vector
[28], and (ii) this left eigenvector is orthogonal to each of the right
eigenvectors corresponding to the remaining eigenvalues.

Summarized below are the primary contributions of the paper:

(1) Extensions of the s-PFSA: The algorithms of s-PFSA are
modified, based on the algebraic and geometric properties
of state-transition probability matrices, using a projection
method, and hence is called p-PFSA. This method shows
superior accuracy and robustness of classification.

(2) Development of STSA/PFSA-based transfer learning: The
objective here is to learn from a system dataset and to apply
the learnt models on different problems.

(3) Experimental validation: Efficacy of the proposed TL
method is demonstrated on the problem of identifying sta-
ble and unstable operations in combustion systems. The
models are trained on a numerical Rijke-tube model [29],
and the learnt knowledge is transferred to classification of
similar regimes of operation in: (i) a Rijke-tube apparatus
[15] and (ii) a combustor apparatus [30].

(4) Comparison of the PFSA-based TL with NN-based TL: The
proposed PFSA-based TL has been validated by compari-
son with NN-based TL using three separate NN architec-
tures: two shallow fully connected nets and another net that
has an long short-term memory (LSTM) layer in addition
to two hidden layers, all of which serve as benchmarks, in
terms of classification accuracy, computation time, and
amount of data needed to train good classifiers.

The paper is organized as follows: Section 2 describes the three
systems that generate ensembles of data to demonstrate the effi-
cacy of the proposed TL method. Section 3 provides a brief back-
ground on STSA and PFSA-based classification. Section 4
succinctly describes both PFSA-based TL and NN-based TL. Sec-
tion 5 presents the results and detailed discussions for validation
of the proposed PFSA-based TL with NN-based TL as bench-
marks. Section 6 summarizes and concludes the paper with rec-
ommendations for future research.

2 Data Generation for Transfer Learning

This section deals with generation of data for training the trans-
fer learning algorithms from the following three different sources
of time-series data from: (i) a previously validated numerical
model [29] of a Rijke tube [12], (ii) an experimental apparatus of
electrically heated Rijke tube [15], and (iii) an experimental appa-
ratus of fuel-burning combustor [30]. The knowledge, derived
from the numerical model, is first transferred for identification of
the identical states in the experimental Rijke-tube apparatus [15],
which had been originally used to validate the numerical model.
Then, the unstable regime in the experimental combustor appara-
tus [30] is identified by transferring the aforementioned knowl-
edge derived from the numerical model [29]. Subsections that
follow describe each of the three systems used to generate the
pressure time-series to perform the classification. A description of
each system is available in the respective reference.

2.1 Source Domain: Numerical Rijke-Tube Model. This
subsection describes the source domain as a Galerkin-
decomposition-based reduced-order numerical model of a Rijke
tube [6,31], where the heat source interacts with the acoustics of
the Rijke tube to produce TAI [11]. The one-dimensional wave
equation is derived for the pressure perturbations (p0) as

@2p0

@t2
� a2 @

2p0

@x2
¼ c� 1ð Þ @

_Q

@t
(1)

where a is the speed of sound, and _Q is the volumetric rate of ther-
mal power addition. The effects of mean flow on the acoustic field
are not included in Eq. (1). Culick’s expansion [31] has been used
for the pressure perturbations (p0) and velocity perturbations (u0)
using the Galerkin eigen-acoustic modes. The decomposition into
n modes having individual time-varying modal amplitudes of gjðtÞ
yields

p0ðx; tÞ ¼
Xn
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Xn

j¼1

gjðtÞwjðxÞ (2)
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Xn

j¼1

_gj tð Þ
ck2

j

dwj xð Þ
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(3)

where p0 is the mean undisturbed pressure, the mode shape (at the
location x) and the wave number of the jth mode (which has a nat-
ural frequency of xj) are denoted by wjðxÞ and kj, respectively,
and c is the ratio of specific heats Cp and Cv of air. Substituting
Eq. (2) into Eq. (1), expanding into eigenmodes, and adding a
damping term nj [9], yields

d2gj

dt2
þ 2njxj
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The left-hand side of Eq. (4) represents a set of n uncoupled lin-
ear oscillators that are excited by the forcing terms on the right-
hand side. For the Rijke tube, Heckl [32] proposed a modified
version of King’s law for computing the volumetric rate of heat
addition ( _Q) which can be modified for a two heater Rijke tube as
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dt
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þ
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(5)
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where L is the length of the Rijke tube, Lw and dw are the
equivalent length and diameter of the (electrically heated) wire,
respectively, k is the thermal conductivity of air, Cv is the
constant-volume specific heat capacity of air, q0 and u0 are the
mean density and (linear) speed of the Rijke-tube air, respectively,
s is the time lag between the heat transfer and the velocity as a
result of thermal inertia (computed by using Lighthill’s correlation
as s ’ 0:2ðdw=u0Þ), ðTw � �TÞ is the mean temperature difference
between the heater and the air, S is the cross-sectional area of the
Rijke tube, xf is the heater location, and u0f is the acoustic velocity
perturbation at the heater location. The subscript i takes values 1
and 2 for the primary and secondary heaters, respectively. The
frequency-dependent damping coefficient nj is given in Ref. [33]
as

nj¢ c1

xj

x1

þ c2

ffiffiffiffiffiffi
x1

xj

r !
(7)

The first term in Eq. (7) is responsible for the end losses, and the
second term represents losses due to boundary layers; and the con-
stants c1 and c2 are the damping coefficients that represent the
amount of acoustic damping in the Rijke tube. The modal equa-
tions, derived above, can be cast in a linearized state-space form,
and the dimensionality of the ordinary differential equation sys-
tem depends on the number of the selected “significant” acoustic
modes. For each mode j, there are two states, gj and _gj . This ordi-
nary differential equation system can be solved using a numerical
method (e.g., Runge–Kutta).

Bhattacharya et al. [29] modified the above formulation slightly
to incorporate the effects of the heater response times and tran-
sient behavior, i.e., the heater is switched on at the time t¼ 0 and
the system dynamics evolve over time, which may lead to unsta-
ble operation provided that the conditions are favorable, which is
typically ignored in other similar reduced-order models. The rate
of heat loss ( _Qheater) from the heater in a time-step is computed
[34] as
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Thus, the temperature of the heater wire (Tw) changes in the time
interval ½t; tþ dtÞ as

Tw  Tw þ
P tð Þ � _Qheater tð Þ
� �

dt

MCpwire Twð Þ
(9)

where M is the mass of the wire mesh that was obtained by mea-
surement, P(t) is the time-dependant (electrical) power supplied to
the heater, and Cpwire is the (temperature-dependent) specific heat
capacity of the wire material, which is available from manufac-
turer’s specifications. For computing the temperature in the Rijke
tube, the flow domain in the tube is split into three segments; one
being the volume between the inlet and first heater, the next being
the volume between the two heaters, and the third being the vol-
ume between the secondary heater and the outlet. The average
temperature, which controls the physics of the system, is meas-
ured as the length-weighted average of the segment temperatures.

Bhattacharya et al. [29] also made other modifications to the
Galerkin model, which ensure that the reduced-order model
closely mimics the operation of the experimental Rijke tube that
is used to validate the model.

The ensemble of generated data consists of 250 simulated time-
series, each of duration 30 s at a sampling frequency of 10,000 Hz
(i.e., a numerical integration time-step of 1� 10�4 s). Each time-

series corresponds to a particular fixed value of inlet air-flow rate
and heater power, with the system beginning at a stable condition
and remaining stable or going unstable depending on the flow-rate
and heater power combination. In the Rijke-tube experiments,
used to validate this numerical model, the noise was generated by
both the process (e.g., heat transfer and fluid-flow) and the sensor
(i.e., pressure transducers). In the numerical model of the Rijke
tube, the noise has been jointly emulated by inserting an additive
zero-mean Gaussian noise of standard deviation of 0.3 Pa, chosen
to match the experimental results [29].

2.2 Target Domain 1: Experimental Rijke Tube. The first
target domain is the experimental Rijke-tube apparatus, con-
structed at Penn State [15], which has been used to validate the
previously described numerical Rijke-tube model. The apparatus
consists of a hollow aluminum duct of square cross section. The
Rijke tube is 1.5 m long, and each side of the cross section meas-
ures 93 mm along each inner wall. This apparatus has two heating
elements: a fixed primary heater at 0.375 m from the flow inlet
and a movable secondary heater downstream. The heaters are
made of compact wire-mesh nichrome for generating thermal
power, which emulate the flame in a combustible fuel–air mixture
in a real-life combustor. The movable secondary (control) heater
has a maximum displacement of 500 mm from the exit end of the
tube to the center. Figure 1 depicts the Rijke-tube apparatus.

The pressure signals are measured by an array of eight wall-
mounted sensors that are placed at equidistant axial locations; the
pressure data are acquired at a sampling rate of 8192 Hz. An Ali-
cat mass flow controller (0–1000 SLPM) controls the air mass-
flow rate into the system. The mass-flow rate controls not just the
velocity over the heater but also affects the convective heat trans-
fer from the wire mesh to the air and heat loss to the walls. Decou-
plers are fitted at the inlet and outlet of the tube, which are large
hollow enclosures serving the purpose of producing pressure
waves under open–open end boundary conditions of the Rijke
tube. Additionally, the upstream decoupler attenuates flow fluctu-
ations at the inlet, while the downstream decoupler serves as a
heat sink, which allow the hot air exiting by the outlet to be
cooled, before it is released to the atmosphere.

The nichrome heaters are designed to be capable of handling
high heating loads for sufficiently long times without being oxi-
dized at the high operating temperatures. The square-weave 40-
mesh structure of each heater forms acoustically compact sources
of thermal energy and allows uniform heating of air over the flow
cross section. Power is supplied from a programable DC power
supply which can provide powers up to 2000 W per heater. The
length of the tube downstream of the primary heater is insulated
to prevent heat loss from the walls allowing for maintaining the
same initial and running conditions of different experimental runs,
and also acts as a safety measure to prevent the operator from
coming in contact with the hot metal walls.

The experimental results used in this paper were obtained by
operating the Rijke tube at different conditions corresponding to
various values of air flow-rate (ranging from 60 to 300 LPM in
increments of 10 LPM) and primary heater powers (ranging from
200 to 2000 W in increments of 200 W). The data were collected
over windows of 30 s duration for each condition, which captures
the transient phenomena. In all the results presented in this paper,
the control heater was kept fixed at 1.125 m, and it remained
switched off in all experimental trials.

2.3 Target Domain 2: Experimental Combustor. The sec-
ond target domain is an experimental combustor which is a
laboratory-scale apparatus, also constructed at Penn State [30].
This experimental combustor, a schematic of which is shown in
Fig. 2, consists of an inlet section, an injector, a combustion
chamber, and an exhaust section. An optically accessible quartz
section is placed downstream of the fuel injector and is followed
by a variable length steel section which is set to have various
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lengths between �25 and 59 in. (�64 and 150 mm) with �1 in.
(�25 mm) increments. High pressure air is supplied by a compres-
sor, which is preheated to 250 �C by an electric heater. The air-
flow rate ranges from 25 to 30 m/s with increments of 5 m/s. The
fuel is natural gas (approximately 95% methane), and its flow-rate
is adjusted to obtain fuel–air equivalence ratios (/) of 0.525, 0.55,
0.60, and 0.65. Statistically stationary pressure time-series data of
8 s duration were obtained from pressure probes at a sampling rate
of 8192 Hz for different combinations of combustor length and
equivalence ratio.

3 Symbolic Time-Series Analysis and Its Extensions

Symbolic time-series analysis [22] and its extensions, namely,
PFSA [23] and D-Markov machines [24], have been used for
developing the associated TL algorithms. Although the above
topics and their applications to combustion systems (e.g.,
Ref. [27]) have been extensively reported in literature, this section
presents their essential concepts for completeness of the paper and
ease of its readability. Following this quick recall, the p-PFSA
modification is proposed in Sec. 3.3, and its algorithm follows in
Sec. 3.4.

3.1 Introduction to Probabilistic Finite State Automata.
This subsection describes the construction of PFSA by first sym-
bolizing the continuous-valued time-series data with a partitioning
method of choice [35], which converts the time-series into a string
of discrete symbols from a (finite) alphabet. The cardinality of the
alphabet is equal to the number of cells in the partitioning used
for symbolization.

DEFINITION 1. A finite state automaton (FSA) G, having a deter-
ministic algebraic structure, is a triple ðA;Q; dÞ where:

� A is a (nonempty finite) alphabet, i.e., its cardinality jAj is a
positive integer.

� Q is a (nonempty finite) set of states, i.e., its cardinality jQj is
a positive integer.

� d : Q�A ! Q is a (deterministic) state-transition map.

DEFINITION 2. A PFSA, J, is a pair J ¼ ðG;pÞ, where:

� The deterministic FSA, G, is called the underlying FSA of the
PFSA.

� The probability map, p : Q�A ! ½0; 1�, is called the morph
function (also known as symbol generation probability func-
tion) that satisfies the condition:

P
s2Apðq; sÞ ¼ 1 for each

q 2 Q. The map, p, can be represented by a jQj � jAj sto-
chastic matrix, P (i.e., each element of P is non-negative
and each row sum of P is unity). In that case, the PFSA is a
quadruple, i.e., J ¼ ðA;Q; d;PÞ.

� The state-transition probability mass function, s : Q� Q!
½0; 1�, is constructed by combining d and P, which can be

structured as a jQj � jQj state-transition probability matrix,
T. In that case, the PFSA can also be described as a triple,
i.e., J ¼ ðA;Q; TÞ.

Remark 3. The time-series is typically normalized prior to parti-
tioning, with the preferred methods being: (i) scaling the data to a
fixed range (e.g., unit range) or (ii) performing z-normalization,
which converts the data to having zero-mean and unit-variance;
this is done to mitigate the effects of spurious noise and bias in
the time-series, while ensuring that a fixed set of finite partition
boundaries can be used across the full range of data. The fixed
partitioning allows comparison of different PFSA, as they evolve,
and eliminates the need for recomputation of the partitioning
boundaries during testing.

The PFSA structure of a D-Markov machine generates symbol
strings fs1s2 � � � s‘ : sj 2 A and ‘ is a positive integerg on the
underlying Markov process [24]. When constructing the D-
Markov machine, it is assumed that the generation of the next
symbol has a dependence only on a finite history of the last D or
less consecutive symbols, i.e., the (most recent) symbol block of
length not exceeding D. A D-Markov machine is formally defined
as follows.

DEFINITION 4. A D-Markov machine [24] is a PFSA in the sense
of Definition 2, and it generates symbols that solely depend on the
(most recent) history of at most D consecutive symbols, where the
positive integer D is called the depth of the machine. Equivalently,
a D-Markov machine is a statistically stationary stochastic pro-
cess � � � s�1s0s1 � � �, where the probability of occurrence of a new
symbol depends only on the last consecutive (at most) D symbols,
i.e.,

P½snj � � � sn�D � � � sn�1� ¼ P½snjsn�D � � � sn�1�

Remark 5. If the depth of the D-Markov machine is unity (i.e.,
D¼ 1), then the state set, Q, and symbol alphabet, A, become
equivalent, i.e., the morph matrix, P, and the state-transition prob-
ability matrix, T, are identical if D¼ 1.

Once the alphabet size, jAj, and depth, D, are set, the maximum
possible number of states is fixed to jAjD. To generate the morph

Fig. 1 Rijke-tube experimental apparatus

Fig. 2 Schematic diagram of the combustor apparatus
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matrix, P, from a (finite-length) symbol string, the occurrence of
each state is sequentially counted, as explained below.

Let Nij denote the number of times the symbol sj 2 A is emitted
from the state qi 2 Q. That is

Pij ¼ p qi; sjð Þ¢
1þ Nij

jAj þ
P

‘ Ni‘
(10)

Initializing the count of each element to 1 in Eq. (10) ensures that,
if no event is generated at a state q 2 Q, there should be no prefer-
ence to any particular symbol, making it logical to have
pðq; sÞ ¼ 1=jAj 8s 2 A, i.e., the uniform distribution of event
generation at the state, q. This procedure guarantees that the
PFSA, constructed from a (finite-length) symbol string, must have
an (elementwise) strictly positive morph map, P.

Remark 6. The mathematical logic used to generate the morph
matrix, P, and state-transition probability matrix, T, guarantees
that these matrices are both stochastic (i.e., each matrix element is
positive and each row sum is unity [28]) and ergodic (i.e., every
state of the PFSA can be reached within a finite number of itera-
tions irrespective of the starting state [28,36,37]). These matrix
properties of stochasticity and ergodicity are necessary for devel-
oping the mathematical theory of p-PFSA classification, presented
in this paper.

3.2 Standard Probabilistic Finite State Automata-Based
Classification. This section develops the classification algo-
rithms, based on the s-PFSA, by first training the s-PFSA and then
testing the trained s-PFSA on the remainder of the data. Let C be
the number of labeled classes in a setting of supervised classifica-
tion; then, a total of C PFSA morph matrices are trained, each cor-
responding to a certain class, and are denoted as Pc; c ¼ 1;…; C.
During the testing phase, the s-PFSA algorithm is tested on a data-
set belonging to an unknown class. The test time-series is symbol-
ized by using the same partitioning method with the same
parameters as it was done during training; and the resulting morph
matrix is Ptst. The divergence of Ptst from each of the trained
morph matrices, Pc; c ¼ 1;…; C is computed; and the class that
yields the smallest distance is classified to be the class that the
testing time-series is claimed to belong to

identified class ¼ argmin
c2f1;2;…;Cg

jjPtst �Pcjj (11)

Thus, decision-making in Eq. (11) is thresholdless. Details of con-
structing the s-PFSA algorithm are available in Ref. [27].

3.3 Projection-Based Probabilistic Finite State Automata
for Classification. This subsection develops the proposed method
of p-PFSA. In p-PFSA, the state probability vector of the PFSA is
projected onto the spaces of feature hyperplanes, corresponding to
different operating regimes of the dynamical system under
consideration.

Let the state-transition probability matrix T 2 Rn�n (see Defi-
nition 2), where n is a positive integer, be an ergodic stochastic
matrix [28]. Ergodicity of the stochastic matrix, T, implies the
existence of exactly one eigenvalue, k0 ¼ 1, and the remaining
m 	 ðn� 1Þ distinct eigenvalues are located on or inside the unit
circle (with center at 0) in the complex plane, i.e., jkij 	 1 for
i ¼ 1; 2;…;m. If some of the eigenvalues are repeated, it is possi-
ble that there will be only m linearly independent left eigenvec-
tors, v01;…; v0m and m linearly independent right eigenvectors,
u1;…; um, where 1 	 m 	 ðn� 1Þ. Each of these eigenvectors
could be normalized and ordered for convenience as follows:

1 ¼ k0 > jk1j > � � � > jkmj 
 0

The above eigenvalues, ki; i ¼ 1; 2;…;m, are either real or pairs
of complex conjugates and their respective left eigenvectors, fv0ig,

and right eigenvectors, fuig, are also either real or pairs of com-
plex conjugates, because

v0iT ¼ kiv
0
i ) �v 0iT ¼ �k i�v

0
i and Tui ¼ kiui ) T�ui ¼ �ki �ui

where �vi; �ui, and �ki are complex conjugates of vi, ui, and ki,
respectively. Let v00 and u0 be, respectively, the (normalized) left
and right eigenvectors of T with respect to the unique eigenvalue,
k0 ¼ 1. The remaining left and right eigenvectors are v0i and ui,
respectively, corresponding to distinct eigenvalues, ki.

Claim: For distinct eigenvalues ki 6¼ kj; ði 6¼ jÞ; i; j 2
f0; 1;…;mg, the inner product hvi; uji ¼ 0, i.e., vi?uj.

Justification of Claim: Since ki 6¼ kj, at least one of them is
nonzero. Without loss of generality, we set ki 6¼ 0. Then

hvi;uji¼v0iuj¼
1

ki
v0iTuj¼

kj

ki
v0iuj¼

kj

ki
hvi;uji

) 1�kj

ki

� �
hvi;uji¼0

Since ki 6¼ kj, it follows that ð1� ðkj=kiÞÞ 6¼ 0 ) hvi; uji ¼ 0.
End of Justification
From the above claim, it is concluded that v0?uj corresponding

to the eigenvalues, kj; j 2 f1; 2;…;mg. In the training phase, v0

and uj 8j 2 f1;…;mg are identified; in the testing phase, it is nec-

essary to identify only vtst
0 (corresponding to an observed test

time-series belonging to an unknown class) for detection and clas-
sification of anomalous events, if any. If there is no anomaly, the
vector, vtst

0 should be nearly coincident with v0 and, thus, nearly
orthogonal to the m-dimensional subspace spanned by
uj; j 2 f1; 2;…;mg, which has already been identified in the train-

ing phase. However, in the presence of an anomaly, vtst
0 should

very likely deviate from v0 that corresponds to the nominal phase.
The key idea behind the development of p-PFSA is to quantify

the anomaly as a deviation of vtst
0 from v0 by using the projection

of vtst
0 onto the space spanned by uj 8j ¼ 1;…;m. From the per-

spectives of energy distribution, the absolute values, jkij, of the
eigenvalues signify the energy associated with the (normalized)
eigenvector ui; therefore, each ui; i ¼ 1;…;m is weighted asffiffiffiffiffiffiffi
jkij

p
ui. The normalized version of

ffiffiffiffiffiffiffi
jkij

p
ui is ui, because the ui’s

were originally generated as normalized vectors.
For a general ergodic stochastic matrix T, the right eigenvectors

may not be orthogonal to each other. Therefore, the (linearly inde-
pendent) vectors

ffiffiffiffiffiffiffi
jkij

p
ui; i ¼ 1;…;m, are further transformed by

Gram–Schmidt orthogonalization as a set of mutually orthogonal
vectors ~ui; i ¼ 1;…;m, i.e., h~ui; ~uji ¼ 0 8i 6¼ j. Having identified
the m mutually orthogonal n-dimensional vectors ~ui, the n-
dimensional weighted error vector, E, is obtained by projection of
the vector vtst

0 onto the m-dimensional subspace, spanned by
~ui; i ¼ 1;…;m, where 1 	 m 	 ðn� 1Þ, as

E¢
Xm

i¼1

hvtst
0 ; ~uiiui with jjEjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

jhvtst
0 ; ~uiij2

s
(12)

3.4 Projection-Based Probabilistic Finite State Automata
Algorithm. This subsection develops the p-PFSA algorithm,
where a classification problem is addressed with a total number of
C classes (i.e., regimes). In the training phase, a PFSA is generated
for each class as described in Secs. 3.1 and 3.2. The state-
transition probability matrix, Tc for each class, c 2 f1; 2;…; Cg is
treated as the feature for the respective class (i.e., individual
operational regime in the setting of supervised classification). In
this paper, Tc is equivalent to Pc, because the PFSA is constructed
with D¼ 1 (see Remark 5) [27], and each Tc is ergodic and sto-
chastic (see Remark 6); therefore, for each Tc, there exists a set of
orthogonalized right eigenvectors, f~uc

i g, where for each class c,
i ¼ 1;…;mc, and 1 	 mc 	 ðn� 1Þ is the number of linearly
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independent eigenvectors for class c. Each set of orthogonalized
right eigenvectors, f~uc

i g, generates a hyperplane of dimension, mc,
respectively. It is expected that, for different classes representing
distinct operational regimes, the hyperplanes will be distinct. That
is, a hyperplane belonging to class, c, will have its distinct normal
direction, vc

0. Classes that are close to each other will have direc-
tions close to each other, but they are still distinct.

In the testing (i.e., classification) phase, a time-series is
observed, which belongs to an unknown class. The (stochastic and
ergodic) state-transition probability matrix, Ttst, is generated for
this testing time-series, and the left eigenvector ðvtst

0 Þ
0

of the Ttst-
matrix is obtained corresponding to the unique eigenvalue
ktst

0 ¼ 1. Then, vtst
0 is projected onto each of the C hyperplanes that

have been generated in the training phase; and the norm of the
error vector in each hyperplane is computed by following a proce-
dure similar to that in Eq. (12) as jjEc;tstjj, where c ¼ 1;…; C. The
class corresponding to the lowest error magnitude is identified to
be the class to which the testing time-series belongs, i.e.,

identified class ¼ argmin
c2f1;…;Cg

jjEc;tstjj (13)

In another research article, the authors have demonstrated the
efficacy of the p-PFSA algorithm in the task of detecting precur-
sors to a potential fatigue crack developing in structural compo-
nents under fluctuating stresses [38], where it shows extremely
good accuracy and robustness.

Note: The depth D is chosen in this paper based on a previous
work [27], where D¼ 1 provides good results in identification of
combustion instability. In fact, in many other cases (e.g., Refs.
[26,36], and [38]), it has been shown that D¼ 1 is sufficient for
achieving good accuracy in PFSA, provided that the alphabet size
is appropriately selected. Nevertheless, the s-PFSA algorithm is
not restricted to D¼ 1 as seen in the earlier work of Sarkar et al.
[13], and neither is the proposed p-PFSA algorithm. In general,
higher values of D increase the number of states, creating a larger
state-transition matrix, which can be handled by the algorithm
seamlessly.

4 Transfer Learning

This section very succinctly describes the core concept of TL.
It also presents the basic methodology of NN-based TL to serve as
benchmarks for validation of PFSA-based TL. In the setting of
TL, there are a source domain DS, which is used to learn, and one
(or more) target domain DT , which is to be investigated; and the
associated tasks, T S and T T , belong to the domains, DS and DT ,
respectively.

Let X be the feature space consisting of feature vectors

Xi¢fxi
1;…; xi

ng, where the superscript i of Xi represents either a
source S or a target T. The associated marginal probability mea-

sure PðXiÞ is defined for each domain Di ¼ fXi;PðXiÞg. Given a
label space Y, a predictive function f : X ! Y is used to classify

a feature ðxi
j) to a corresponding label f ðxi

jÞ. Then, a task T ¼
fY; f ðxi

jÞg is learned from the ordered pairs fxi
j; y

i
jg that are avail-

able in the source domain DS. Given the source and target

domains, where either DS 6¼ DT or T S 6¼ T T , the objective is to

learn a function f Sð�Þ and then attempt to “transfer” the learned
knowledge to the task of performing a classification in the target

domain (i.e., to generate f Tð�Þ).
In both TL problems considered in this paper, the source and

target domains are different, with a numerical model acting as the
source and Rijke-tube (see Fig. 1) and combustor (see Fig. 2)
experimental apparatuses, acting as two different targets. How-
ever, the task remains the same, namely, classification between
stable and unstable operational modes of combustion from time-
series ensembles of pressure oscillations. Therefore, in this case,

DS 6¼ DT but T S ¼ T T ; hence, the TL problem at hand belongs to
the category of TTL (see Sec. 1). A succinct introduction to how a

neural network-based TL functions is presented in Sec. 4.1, while
the proposed PFSA-based transfer learning algorithm is explained
in Sec. 4.2.

4.1 Neural Network-Based Transfer Learning. This sub-
section addresses NN-based transfer learning which has been in
use over the past couple of decades, and the details are available
in literature (e.g., Refs. [1,2], and [7]). In NN-based TL, the net is
trained with data available from the source domain. Such a net
can be shallow (i.e., having a single or only a few hidden layers)
or deep (i.e., having as many hidden layers as desired) and is not
restricted to have fully connected layers. It can also have convolu-
tion layers, recurrent layers, or LSTM layers. The last layer is typ-
ically the classification/regression layer that takes in inputs from
the previous (i.e., second from the last) layer to generate the out-
put. With two shallow NNs and another NN with an LSTM layer-
based TL architecture, serving as benchmarks, this paper validates
the concept of PFSA-based TL between a source domain of the
numerical Rijke-tube model [29] and two target domains of exper-
imental apparatuses: (i) a Rijke-tube apparatus [15] and (ii) a
laboratory-scale combustor apparatus [30].

There are two general ways to perform NN-based TL: (i) with-
out retraining any prior information or (ii) with retrained partial
information. In the first method, the trained NN is directly applied
to the target problem by assuming the absence of any training data
from the target domain. In the second method, which could be
used if a (possibly) small amount of data is available from the tar-
get domain, the initial layers of the NN are frozen and only the
last (discriminating) layer is trained on the available training data
from the target domain. This procedure does not need to train the
weights of the hidden layers as they are retained from the (previ-
ously) trained net; and only the final layer needs to be trained. It
would also reduce the total training time, and less data will be
needed to learn the optimal net, because most of the net is
pretrained.

4.2 Probabilistic Finite State Automata-Based Transfer
Learning. This subsection introduces the notion of PFSA-based
TL, which apparently has not been reported in open literature. As
mentioned at the beginning of Sec. 4, the idea of TL is to learn a
task and the associated function for the source domain and then
translate this knowledge to the target domain. This is relatively
straight-forward to do in a STSA/PFSA setting. For each of the
three systems (i.e., the numerical model acting as the source and
two experimental apparatuses acting as two different targets)
under consideration in this paper, there exists labeled data corre-
sponding to both stable and unstable states. Since these data are
transient for both the numerical model and experimental Rijke
tube, they have been investigated in a windowed fashion to emu-
late real-time detection and classification. The rationale is that an
online detection and control algorithm tests the evolving dynamics
of the observed time-series to identify any (possible) imminent
transition from stable to unstable operation and to take appropriate
steps toward retention of stability. Windowing the signal leads to
the formation of “pseudo-statistically stationary” pressure waves
that are less difficult to classify.

In the first method, a thresholdless approach is used, which is
similar to the “no-retraining” case in the NN-based TL (see
Sec. 4.1). Initially, a PFSA model is learnt to classify the stable
and unstable states in the data ensemble of pressure time-series,
obtained from the numerical Rijke-tube model by using the for-
mulation described in Sec. 3.2. Subsequently, this PFSA model is
used to discriminate between the stable and unstable states in both
target domains, namely, Rijke-tube apparatus and combustor
apparatus, without any retraining. The rationale is that, although
the above three domains are different, the respective pressure-
wave signature in each domain is, to some extent, similar to that
during the stable and unstable operations.
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In the second method, a thresholded approach, which is (in
principle) similar to “retraining” of the NN-based TL as described
in Sec. 4.1, has been used. In this case, a scalar-valued parameter
is computed to discriminate between the two regimes by rearrang-
ing Eqs. (11) and (13) as

jjPtst �PStablejj
jjPtst �PUnstablejj

0
UnstableRegime

StableRegime

gs�PFSA (14)

jjEStable;tstjj
jjEUnstable;tstjj

0
UnstableRegime

StableRegime

gp�PFSA (15)

where the thresholds gs�PFSA and gp�PFSA are obtained by using
receiver operating characteristics curves [8,27], which are created
by plotting the true positive rate (i.e., the rate at which the stable
condition is correctly classified to be stable) against the false posi-
tive rate (rate at which the stable state is falsely classified to be
unstable) over a range of the threshold. The optimal threshold val-
ues are identified as those yielding the least errors (i.e., the least
number of misclassified data windows) in the given test set. In the
thresholded option, for the “transferred to” systems, new thresh-
olds need to be learnt from a small amount of available labeled
data, in the absence of which the thresholdless method is
recommended.

5 Results and Discussions

Before presenting the results of the proposed PFSA-based TL
and comparing these results with those of neural network-based
TL with different architectures, this section briefly discusses the
nature of the time-series data investigated in this paper. Shown in
Fig. 3 are the pressure time-series data obtained from each of the
three systems: (i) source domain: the reduced-order numerical
Rijke-tube model (left-hand column), (ii) target domain 1: Rijke-
tube apparatus (middle column), and (iii) target domain 2: com-
bustor apparatus (right-hand column). The first and third rows
(from top) in Fig. 3 display the pressure time-series for the stable
and unstable regimes, respectively, while the second and fourth
rows show the corresponding frequency contents as plots of FFT.

It is seen in Fig. 3 that the stable operation is characterized by
low-amplitude chaotic signals with no strong peak in the FFT
plots, while the TAI produces almost sinusoidal signals and the
corresponding FFT plots show strong peaks at the resonant fre-
quencies and some of the harmonics (e.g., the harmonics in the
data from Rijke-tube apparatus). It is noted that the peak frequen-
cies of the numerical Rijke-tube model and the Rijke-tube appara-
tus have similar resonant frequencies, because the numerical
model is validated against the Rijke-tube apparatus [26]. In con-
trast, the combustor apparatus has significantly different response
characteristics, because the combustion chamber has a different
geometry and handles much higher energy transfer.

5.1 Results of Probabilistic Finite State Automata-Based
Transfer Learning. This subsection reports how the proposed
PFSA-based TL transfers the knowledge obtained from the
reduced-order numerical model to the Rijke-tube apparatus and
also to the combustion apparatus; the results are presented by
using both s-PFSA and p-PFSA algorithms. Prior to learning a
PFSA, certain parameters need to be set; this paper has reported
results for three different alphabet sizes, namely, jAj ¼ 4; 10, and
20, while keeping the PFSA depth fixed at D¼ 1. The maximum
entropy partitioning [35] is chosen for symbolization; and z-
normalization (i.e., zero-mean and unit-variance) is carried out on
the data window prior to analysis by the PFSA. The data are
downsampled by DS¼ 2, and the moving window is of length
WL ¼ 50 ms, while the windowing is done at a rate of 20 Hz, i.e.,
20 windows per second. These values are chosen based on the
results reported in a recent publication [27].

In the thresholdless option, explained in Sec. 4.2, the PFSA is
trained on the data obtained from the source domain of a numeri-
cal (Rijke tube) model. A random 70% of the total available tran-
sient data (see Sec. 2.1) are used to train the source domain. The
remaining 30% of the data are used to test the learnt classifier.
Subsequently, the same PFSA model is used to classify the tran-
sient pressure time-series in two target systems (i.e., Rijke-tube
apparatus and combustor apparatus) individually. As there is no
need to relearn anything, the entire data available from these two
systems are used for testing the accuracy of TL in two targets.

Fig. 3 Profiles of pressure oscillations and corresponding FFTs under both stable and unstable conditions for (i) reduced-
order numerical Rijke-tube model (left-hand column), (ii) experimental Rijke-tube apparatus (middle column), and (iii) combus-
tor apparatus (right-hand column)
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In the thresholded option, after training a PFSA model using
70% of the source domain (i.e., the numerical model) data, the
same data are used to learn the thresholds, gs�PFSA and gp�PFSA, as
explained in Sec. 4.2. After testing the efficacy of learning the
source domain by using the remaining 30% of the data, this
knowledge is transferred to classify the two target systems. How-
ever, being thresholded, there is a need for further training to find
an optimal threshold, given labeled data from the two target sys-
tems. In the paper, 5% of the available training data have been
used in some trials to relearn the appropriate thresholds, while
10% of the data are used in the others. The procedure would be
similar to a situation if the primary data source (e.g., numerical
model) is of low or medium fidelity but has abundant data, while
the experimental (i.e., target) data are scarce. In contrast, if the
target data are of very low quality or are not available at all, the
thresholdless option should be chosen.

Table 1 presents the results for both the thresholdless and
thresholded options for three alphabet sizes. These results are
obtained as an average of 20 independent trials, where the training
sets are randomly chosen in each trial, and the PFSAs are con-
structed from scratch for each trial. The first three columns in
Table 1 under “classification error” show the errors made by the
trained models in classifying stable and unstable data in the source
domain itself, from where the models are initially learnt (e.g.,
70% data used to train and the remaining 30% to test). The next
three columns show the errors in classifying the experimental data
of the Rijke-tube apparatus by using the “transfer learning,” while
the last three columns show the same for the combustor apparatus.

It is seen in Table 1 that the transfer learning from source (i.e.,
numerical Rijke tube) data to target 1 (i.e., experimental Rijke
tube) data performs very well across all values of alphabet size.
The rationale is that the numerical model parameters were by
tuned to match experimental results. Addition of more retraining
information in the thresholded approach does not change the
results significantly. It is noted that there is no winner between s-
PFSA and p-PFSA in target 1.

When transferring the learnt knowledge to the task of classify-
ing stable and unstable operation in target 2 (i.e., the combustor
apparatus), the thresholdless approach does not fare too well. The
rationale is that the combustor apparatus is significantly different
from the Rijke-tube apparatus, having different characteristics of
pressure waves (see Fig. 3). In the thresholdless approach, p-
PFSA performs significantly better than s-PFSA for jAj ¼ 10 and
jAj ¼ 20. However, in the thresholded approach, allowing just a
minor retraining of the threshold (i.e., using 10% of the available
data in this case) increases the accuracy very significantly for tar-
get 2. The classification error is �10%, which closely matches a
benchmark case using the same data [16], where the authors had
used an FFT-based approach as well as a visibility graph-based
method, which produced 10% and 9.45% error, respectively, in
classification on 1s data windows, as opposed to the shorter 50 ms
windows used in this paper. Although these data are inherently
difficult to discriminate, the transfer-learnt PFSA achieves similar
error rates with an optimal threshold.

5.2 Comparison of Probabilistic Finite State Automata-
Based Transfer Learning and Neural Network-Based Transfer
Learning. This subsection makes a performance comparison of
two shallow NNs and one NN having an LSTM layer
(NN–LSTM) with p-PFSA for the purpose of transfer learning.
The rationale for choosing shallow NNs, instead of deep NNs, is
that deep NNs require much larger volumes of training data that
are often unavailable for target domains (e.g., Rijke-tube appara-
tus and combustor apparatus). Therefore, two shallow fully con-
nected NNs are considered, having one and two hidden layers,
respectively, which are called NN-1 and NN-2 hereafter. In addi-
tion to these two NNs, a third NN, called NN–LSTM, is con-
structed with a LSTM layer that precedes the fully connected
layers. In general, LSTM is an evolution of recurrent neural net-
works (RNNs) that are designed for sequentially handling the
input; and LSTM has found many applications in times-series
classification [39] and forecasting [40]. However, LSTM cells
may require large datasets for learning good models, and also their
training time is significantly large.

For both PFSA-based TL and NN-based TL, the data are first z-
normalized to remove the effects of amplitude and bias [38] for
both thresholdless and thresholded options (see Table 1). In the
comparison of p-PFSA-based TL with NN-based TL, the alphabet
size is chosen to be jAj ¼ 10, and the remaining PFSA parameters
and windowing are the same as those reported in Sec. 5.1.

It is to be noted that in the absence of an LSTM or recurrent
layer, the shallow NNs need a fixed length of input, which PFSA
and NN–LSTM are not restricted to. Thus, for shallow NNs only,
the window size is kept fixed at 250 data-points, which correspond
to: (i) 50 ms windows for the source (i.e., numerical Rijke-tube
data, sampled at 10,000 Hz and (ii) �61 ms windows for both tar-
get 1 and target 2 (i.e., Rijke tube and combustor experimental)
data, sampled at 8192 Hz. The downsampling parameter is DS¼ 2
for all datasets.

The NN-1 architecture has an input layer with 250 inputs, a hid-
den layer having 100 neurons with the ReLU (rectified linear unit)
activation function, and a binary classifier output layer with two
neurons (corresponding to “stable” and “unstable” operations) and
the softmax activation function. The relatively deeper net, NN-2,
is almost identical with an extra fully connected layer just before
the output layer that has 20 neurons with the ReLU activation
function. In the retrained configuration, only the final output layer
is trained for both NN-1 and NN-2. Deeper fully connected NNs
with (up to) four hidden layers and various combinations of layer
sizes have also been tested in this work; but since these results are
largely similar, they are not reported in this paper due to space
limitations. The third net, NN–LSTM, contains an LSTM layer
having 100 cells, followed by two fully connected layers having
100 and 20 neurons, respectively, both with the ReLU activation,
and ending in an output layer of two neurons. More complex deep
NNs (e.g., including convolutional neural networks (CNNs) or
more RNN/LSTM layers) have not been considered in this paper
as they typically would need much larger volumes of data to train;

Table 1 Transfer-learnt classification results for both thresholdless and thresholded approaches, using both s-PFSA and p-PFSA,
for three values of alphabet size (jAj5 4, 10, and 20)

Classification error

Source domain:
Numerical Rijke tube

Target domain 1:
Experimental Rijke tube

Target domain 2:
Experimental combustor

Analysis approach PFSA technique jAj¼ 4 jAj¼ 10 jAj¼ 20 jAj¼ 4 jAj¼ 10 jAj¼ 20 jAj¼ 4 jAj¼ 10 jAj¼ 20

s-PFSA 0.64% 1.09% 1.40% 2.67% 1.52% 1.79% 24.38% 46.35% 54.53%

Thresholdless p-PFSA 1.13% 1.50% 1.53% 1.94% 1.67% 1.79% 27.88% 26.85% 33.22%
s-PFSA 0.36% 0.35% 0.40% 1.98% 1.79% 1.66% 12.96% 10.77% 9.62%

Thresholded p-PFSA 1.06% 0.98% 1.02% 1.89% 1.71% 1.77% 11.10% 9.56% 9.32%
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however, this issue is recommended as a topic of future research
in Sec. 6.

Table 2 compares the classification performance of p-PFSA
with those of NN-1, NN-2, and NN–LSTM, where the
“thresholdless” rows correspond to nonoptimal threshold and non-
retrained cases for PFSA-based TL and NN-based TL, respec-
tively; and similarly, the “thresholded” rows correspond to
optimal threshold and retrained cases for PFSA-based TL and
NN-based TL, respectively. The entries in the column “% split”
denote the percentage of the total available source-domain data
used for training and the percentage of total available target-
domain data to retrain. For example, 10-5-5 means that 10% of
numerical Rijke-tube data are used to train the initial algorithm,
and 5% of data from each of the target domains are used to obtain
the best threshold or to retrain the last layer of the NN. For the
thresholdless option, no retraining is performed, and hence the
corresponding retraining entries are 0% of data.

Table 3 lists the training and testing times for these TL methods
for comparison of their time complexities. Of the two shallow
nets, only the time taken by NN-1 is reported, because NN-2 takes
modestly longer time as expected.

Note: A single core processor of a DELL Precision Tower 7910
Workstation running on an Intel

VR

Xeon
VR

E5-2670 CPU has been
used to evaluate the computation times for all of the methods. The
MATLAB codes of PFSA are available.1 The NN algorithms are
coded in PYTHON using the KERAS library.

Conclusions derived from Tables 1–3 are listed below:

� It is seen from Table 2 that, in the thresholdless option,
across the board, the knowledge transfers well to target 1
(i.e., Rijke-tube apparatus), which had been used to validate
the numerical model [29] that serves as the source domain
for both PFSAs and NNs. However, the NNs do not transfer
very well to target 2 (i.e., the combustor apparatus), produc-
ing accuracies even poorer than thresholdless s-PFSA option
(see Table 1). This is probably due to the difference in
respective signal textures (see Fig. 3). Even after adding an
LSTM layer, the NN–LSTM-based TL performs poorly with-
out retraining; however, if 70% of the available data are used
for training the base network, the accuracy improves and sur-
passes that of shallow NNs, producing an accuracy similar to
thresholdless p-PFSA.

� Even in the thresholded option, where p-PFSA achieves error
rates of �9.3% (which is similar to the benchmark of �9.5%
[16]) for transfer learning to the combustor, the NNs yield
�25% error rate. The performance improves for NN–LSTM
if more data (e.g., 40% or 70%) are used to train the base
model, which still is not as good as the PFSA performance.

� In all options where fully connected NNs are trained with
only 5% or 10% of total training data, it does not learn a suf-
ficiently good model even for classifying the source-domain
testing set itself. This is possibly due to the fact that NNs
notoriously need a large amount of training data, while
PFSA learns a good model even by using a much smaller
amount of training data. By increasing the training data, the
NN accuracy is expected to eventually surpass the PFSA
accuracy, perhaps not significantly. For NN–LSTM, how-
ever, the self-classification accuracy is very low when both
5% and 10% of the data are used for training and the per-
formance becomes competitive only with 40–70% of the
training data, where it modestly surpasses the other methods.

� In the thresholdless option for the NNs, when the volume of
initial training data is low, the transferred models perform
quite poorly; but the model accuracy improves with retrain-
ing. This trend is not seen for PFSA, because it learns good
models from a small amount of data.

� It is seen from Table 3 that the training and testing times (per
window) of PFSA are �0.3 ms and �0.2 ms, respectively,

across the board. The training time is higher only for the
thresholded option, because some time is required to com-
pute the receiver operating characteristics curve and deter-
mine an optimal threshold. However, the training time for
the fully connected NNs ranges from �0.3 ms to �2.0 ms.
The training time per window decreases as the amount of
training data is increased, indicating a fixed time requirement
(in addition to the training time per window) across all trials.
The rationale is that, in the initial training iterations, the
weights and biases of the recently initialized nets are
untrained, and the gradient descent algorithm [8] takes some
time to arrive at a pseudo-optimal set of values for the NN.
Later iterations using the subsequent data are faster, because
it is primarily just fine-tuning the NN. However, the testing
time is relatively small, which is about one-tenth of the time
taken by PFSA (though both are less than 0.2 ms). In con-
trast, for NN–LSTM, training and testing times are signifi-
cantly larger, with a training time �30 ms per window,
which is �2 OOMs larger than those in other methods. Even
the testing time is high, at �2.5 ms per window, which is �1
OOM higher than those of other methods.

Note: In this problem, STSA/PFSA is apparently a good choice,
because the primary information lies in the signal waveform and
symbol transitions; hence, the state-transition probability matrix is
capable of capturing the texture of signal waves. On the other
hand, a fully connected NN is apparently not well-suited for time-
series analyses; more advanced configurations of NN, such as
LSTM (as shown in the paper), RNN, or CNN could potentially
improve the results. Similarly, hidden Markov models (HMMs)
are more suited for time-series analysis, although no HMM-based
TL apparently exists in open literature, and hence has not been
added as a benchmark. There is no “one fits all” solution in ML,
and a fully black-box approach is detrimental to applications of
ML in engineering problems.

6 Summary, Conclusions, and Future Work

This paper has proposed STSA-based TL and validated the
underlying concept by experimentally demonstrating its capability
of discrimination between stable and unstable operations in com-
bustion processes. In this context, PFSA models have been trained
on the information generated from a numerical model of a Rijke
tube [29] as the source domain, which had been validated with the
data from a Rijke-tube apparatus [15]. The knowledge of the
trained PFSA has been used for classifying stable and unstable
operations in: (i) target 1: a Rijke-tube apparatus and (ii) target 2:
a combustion apparatus [30]. While the source domain is largely
similar to that of target 1, the characteristics of the source are dif-
ferent from those of target 2.

Both thresholded and thresholdless options have been used for
classification of stable and unstable operations, where the thresh-
olded option yields better results at the expense of (additional)
labeled data from the target domain to compute the appropriate
thresholds. The s-PFSA has also been modified by introducing the
concept of geometric projection, hence called p-PFSA, to improve
upon the classification accuracy almost across the board (more
prominently in thresholdless TL). The architecture of PFSA-based
TL has been compared with those of two shallow NN-based TL as
well as another architecture where an LSTM layer is added to the
NN. The results show that the PFSA-based thresholded TL per-
forms very well even when transferring the knowledge from the
source domain to classify stable and unstable operations in target
2. In general, NN-based TL algorithms does not perform well
unless there are ample data to train. The NN–LSTM architecture
needs significantly more training data, which eventually surpasses
those of fully connected NNs. Although TL with more complex
NNs (that would require even more training data) may do better, it
might be an overkill, given the excellent performance of the1https://github.com/Chandrachur92/PFSA

Journal of Dynamic Systems, Measurement, and Control OCTOBER 2021, Vol. 143 / 101002-9

D
ow

nloaded from
 http://asm

edc.silverchair.com
/dynam

icsystem
s/article-pdf/143/10/101002/6696603/ds_143_10_101002.pdf by guest on 09 April 2024

https://github.com/Chandrachur92/PFSA


Table 3 Execution times (per data window) of p-PFSA (jAj5 10), NN-1, and NN–LSTM for transfer learning

p-PFSA NN-1 NN–LSTM

Source Target-1 Target-2 Source Target-1 Target-2 Source Target-1 Target-2
% split Training

time
(in ms)

Test
time

(in ms)

Retrain
time

(in ms)

Test
time

(in ms)

Retrain
time

(in ms)

Test
time

(in ms)

Training
time

(in ms)

Test
time

(in ms)

Retrain
time

(in ms)

Test
time

(in ms)

Retrain
time

(in ms)

Test
time

(in ms)

Training
time

(in ms)

Test
time

(in ms)

Retrain
time

(in ms)

Test
time

(in ms)

Retrain
time

(in ms)

Test
time

(in ms)

Thresholdless 5-0-0 0.3339 0.1952 — 0.1956 — 0.1833 2.1707 0.0435 — 0.0219 — 0.0217 33.3496 2.4126 — 2.3033 — 2.2841
10-0-0 0.3369 0.2051 — 0.2026 — 0.1954 1.2273 0.0452 — 0.0252 — 0.0248 32.6847 2.3736 — 2.3245 — 2.3027
40-0-0 0.3400 0.2059 — 0.2040 — 0.1934 0.5048 0.0572 — 0.0255 — 0.0254 30.3627 2.4098 — 2.3463 — 2.2772
70-0-0 0.3425 0.2086 — 0.2054 — 0.1950 0.3852 0.0870 — 0.0252 — 0.0253 27.0580 2.2541 — 2.1714 — 2.1089

Thresholded 5-5-5 0.5416 0.1904 0.1923 0.1877 0.1814 0.1754 1.1898 0.0783 0.6852 0.0461 0.3199 0.0467 35.1011 2.4765 7.5752 2.3532 7.2584 2.3393
10-5-5 0.5588 0.2012 0.2060 0.1988 0.1966 0.1887 0.7519 0.0853 0.7089 0.0502 0.3437 0.0500 29.6397 2.6472 8.2457 2.5506 7.7519 2.5158

10-10-10 0.5721 0.2058 0.2108 0.2023 0.1976 0.1909 0.7564 0.0848 0.5278 0.0506 0.3453 0.0506 31.9728 2.5830 8.1912 2.5970 7.4736 2.2785
40-10-10 0.5688 0.2048 0.2103 0.2029 0.1995 0.1916 0.4834 0.1005 0.5213 0.0505 0.3459 0.0511 31.1396 2.6334 8.2422 2.6003 7.5530 2.3669
70-10-10 0.5600 0.1997 0.2060 0.1987 0.1949 0.1873 0.2675 0.0577 0.2789 0.0263 0.2106 0.0262 30.1221 2.7126 8.1226 2.6746 7.7313 2.4992

Table 2 Performance comparison of p-PFSA (jAj510) and shallow and LSTM neural networks for transfer learning

p-PFSA NN-1 NN-2 NN–LSTM

%
split

Numerical
Rijke error

Experimental
Rijke
error

Experimental
combustor

error

Numerical
Rijke error

Experimental
Rijke
error

Experimental
comb
error

Numerical
Rijke error

Experimental
Rijke
error

Experimental
combustor

error

Numerical
Rijke
error

Experimental
Rijke
error

Experimental
combustor

error

Thresholdless 5-0-0 1.10% 2.04% 27.13% 6.69% 26.28% 73.91% 6.44% 22.79% 74.16% 21.20% 40.31% 74.09%
10-0-0 1.13% 1.95% 28.67% 3.63% 20.78% 74.15% 4.23% 18.10% 74.45% 17.76% 35.21% 74.23%
40-0-0 1.09% 1.96% 27.30% 1.45% 1.18% 79.97% 1.42% 3.22% 73.82% 0.45% 2.84% 28.65%
70-0-0 1.13% 1.94% 27.62% 1.03% 1.18% 73.81% 1.27% 1.31% 73.39% 0.60% 3.45% 25.57%

Thresholded 5-5-5 1.03% 1.78% 9.43% 6.39% 1.90% 29.28% 4.75% 9.26% 26.64% 24.06% 40.31% 26.24%
10-5-5 0.99% 1.80% 9.38% 3.57% 2.23% 28.82% 2.94% 8.79% 26.66% 20.83% 40.29% 25.65%

10-10-10 1.01% 1.72% 9.12% 3.13% 1.56% 26.23% 3.95% 8.49% 25.67% 15.12% 26.53% 25.93%
40-10-10 0.94% 1.69% 9.33% 0.91% 1.32% 25.98% 1.45% 2.54% 25.68% 0.80% 2.21% 21.16%
70-10-10 0.98% 1.72% 9.32% 0.73% 1.26% 26.88% 0.71% 1.41% 25.96% 0.50% 1.98% 17.69%
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PFSA-based TL. The time complexities of PFSA-based TL are
largely comparable to those of shallow NN-based TL.

In conclusion, the proposed PFSA-based TL is apparently a
good alternative to NN-based TL for certain classes of applica-
tions. Specifically, the PFSA-based TL should be potentially very
useful for industry applications. An example is a real-life combus-
tor, where test data are expensive to collect, but they can be simu-
lated with relative ease; therefore, PFSA-based TL is ideally
suited in such situations.

While there are many areas of theoretical and experimental
research to improve the proposed PFSA-based TL so that it can be
gainfully applied to real-life problems, the following topics are
suggested for near-term future research:

� Usage of more advanced tools of neural networks (e.g.,
CNNs and deep RNNs): Such advancements are expected to
yield wider ranges of applications at the expense of extensive
training data and computation time.

� Further testing and validation: The proposed PFSA-based TL
needs to be tested on different types of platforms and datasets
to fully explore its potential capabilities.
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