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Lab-Scale Experimental
Characterization and Dynamic
Scaling Assessment for
Closed-Loop Crosswind Flight of
Airborne Wind Energy Systems
This paper presents the experimental validation and dynamic similarity analysis for a
lab-scale version of an airborne wind energy (AWE) system executing closed-loop motion
control. Execution of crosswind flight patterns, achieved in this work through the asym-
metric motion of three tethers, enables dramatic increases in energy generation com-
pared with stationary operation. Achievement of crosswind flight in the lab-scale
experimental framework described herein allows for rapid, inexpensive, and dynamically
scalable characterization of new control algorithms without recourse to expensive full-
scale prototyping. We first present the experimental setup, then derive dynamic scaling
relationships necessary for the lab-scale behavior to match the full-scale behavior. We
then validate dynamic equivalence of crosswind flight over a range of different scale
models of the Altaeros Buoyant airborne turbine (BAT). This work is the first example of
successful lab-scale control and measurement of crosswind motion for an AWE system
across a range of flow speeds and system scales. The results demonstrate that crosswind
flight can achieve significantly more power production than stationary operation, while
also validating dynamic scaling laws under closed-loop control. [DOI: 10.1115/1.4038650]

1 Introduction

Wind energy is one of several renewable energy sources that
continue to play an increasing role in satisfying the world’s
energy demand. However, tower costs and installation logistics
typically limit towered wind turbine installations to nonremote
and shallow-water offshore locations. Furthermore, towers limit
hub heights to approximately 100 m, which does not provide
access to stronger high-altitude winds. Airborne wind energy
(AWE) systems, which replace towers with tethers and a lifting
body (a kite, wing, or aerostat), enable operation at altitudes up to
600 m, where winds are stronger and more consistent, all while
eliminating up to 90% of the material required for towered sys-
tems (see Ref. [1]). Simultaneously, these systems produce power
at a lower price to the consumer than diesel generators (see
Refs. [2] and [3]). This makes AWE systems a good fit for remote
and off-grid communities. Inspired by these possibilities, numer-
ous companies and research organizations (see Refs. [1] and
[4–9]) have pioneered unique designs for AWE systems over the
past decade. Several AWE systems are depicted in Fig. 1. These
systems either feature airborne power generation (as is the case
with Refs. [1] and [5], where power is generated by an on-board
turbine(s) and transmitted to the ground) or ground-based power
generation (as is the case with Ref. [4], where power is generated
on the ground as a result of tension in the tethers as they are
spooled out).

In addition to enabling high-altitude operation, the replacement
of a tower with tethers enables motion through the air. While this

may initially be viewed as a drawback, appropriately designed
periodic motions have been shown in Ref. [10] to significantly
enhance the power output of an AWE system. Specifically, by
flying an AWE system perpendicular to the wind direction, the
apparent wind speed presented to the airborne system is increased.
This motion, termed crosswind flight, translates into significantly
increased power production, as the power production from a wind
turbine is proportional to the apparent wind speed cubed. The
promise of significantly increased energy generation has led to a
growing body of literature that focuses on crosswind flight control
algorithms, including [11–16].

The vast majority of existing literature on AWE system flight
control has been simulation based. It is well established that while
existing models capture the key variables and phenomena
involved with AWE flight dynamics, they fall short of predicting
significant dynamic characteristics [17,18]. The limitations of
existing models arise from necessary model order reduction, use
of lumped, steady aerodynamic models, and unknown model
parameters.

Given the nascent state of AWE control systems, inaccuracies
in existing simulation models, and significant full-scale experi-
mental prototyping costs, an inexpensive, small-scale experimen-
tal framework for AWE system flight characterization is highly
desirable. However, achieving such a framework in a way that is
approximately dynamically scalable to full-scale systems is a
challenging engineering feat. This has limited the number of
efforts in the AWE community to develop a lab-scale framework.

Within the limited body of literature that addresses small-scale
experimental characterization of crosswind systems, the authors
of Ref. [19] built a small-scale (approximately 30 m maximum
line length) system for characterizing and optimizing figure-eight
crosswind motions. Meanwhile, the authors of Ref. [20] have
developed a wind tunnel-based lab-scale experimental framework
for a rotating cylinder that uses the Magnus effect to generate lift.
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However, the use of a heavier-than-air model in a wind tunnel at
this scale does not allow for dynamic similarity between lab-scale
and full-scale flight, due to the tremendous resulting differences in
characteristic oscillation frequencies.

The authors of Refs. [17], [18], and [21–24], on the other hand,
have developed a water channel-based framework for lab-scale
experimental characterization of AWE systems, with the goal of
establishing dynamic similarity results between this lab-scale
setup and its full-scale counterpart. Work in Refs. [17] and [18]
proposed an initial framework necessary for measuring position
and orientation of a lab-scale system during passive flight. This
work was then extended in Refs. [21–23] to include active control
to constant set points, resulting in nominally stationary flight. In
order to implement crosswind flight at lab scale, a significantly
enhanced motion capture system was introduced in Ref. [24] for
the purpose of measuring model position and orientation over a
much larger range of dynamic motions. This led to the first
demonstration of lab-scale crosswind flight in Ref. [24], with an
evaluation of crosswind flight over multiple flow conditions (and
a single model) presented in Ref. [16].

While our previous conference publications [16,24] demon-
strate successful crosswind flight under a limited number of flow
conditions, these references focus on a single model, do not
include a controller scaling analysis that demonstrates equivalence
between lab-scale and full-scale, and do not account for the
energy consumed in crosswind flight. In fact, all of the previous
scaling analysis for the water channel system, which is summar-
ized in Ref. [23], is restricted to the passive system, without con-
sideration of control parameters. The present paper is the first to
establish dynamic scaling results for control parameters, for both
stationary and crosswind closed-loop flight. Thus, it serves as a
greatly extended version of our previous conference results.

The contributions of this work are as follows:

� The first lab-scale demonstration of closed-loop crosswind
flight at lab scale, for a variety of flow conditions and model
scales.

� An enhanced motion capture system capable of operating
under rapidly varying trajectories and lighting conditions.

� Dynamic scaling relationships that indicate how controller
parameters need to be scaled to achieve similarity between
lab-scale and full-scale flight.

� Experimental validation and error analysis of dynamic scal-
ing laws under closed-loop crosswind flight control.

� Energy generation performance analysis.

After describing the full-scale system, dynamic model, and
crosswind flight control strategy in Sec. 2, we detail the lab-scale
system and present the augmented motion capture system in
Sec. 3. Section 4 details the dynamic similarity between the lab-
scale and full-scale systems, presenting scaling laws necessary to
achieve dynamic similarity under closed-loop control. Results in
Sec. 5 show that:

� Crosswind flight is effectively induced and controlled via
this strategy;

� this crosswind flight can produce significant increases in
energy generation performance; and

� dynamic behavior across three model scales obeys scaling
laws derived via Buckingham-Pi analysis to within experi-
mental tolerances.

We conclude with a discussion of possible sources of error
inherent in the water channel setup.

2 Full-Scale System: Modeling and Flight Control

The various designs of AWE systems can be controlled though
either active aerodynamic surfaces (as is the case with the
Google-Based Makani Power [1] and Ampyx [6] systems, among
others) or tether articulation (used by Altaeros Energies [5] and
KITEnrg [4], among others). The control strategy utilized in this
work induces crosswind motion through the asymmetric articula-
tion of tethers. For this purpose, we focus specifically on the
Altaeros Buoyant air turbine (BAT). The BAT, shown in Fig. 2, is
a lighter-than-air design wherein a horizontal-axis turbine is sus-
pended within an annular shell. The system is intended for flight
at altitudes up to 600 m, where it can harness energy from strong
and consistent winds. The BAT consists of four main components,
namely, a helium-filled annular shroud that holds the turbine, the
turbine itself, three tethers (one of which is a conductive cable),
and a ground station. One tether is attached at the center of the

Fig. 2 Image of prototype full-scale system, the Altaeros BAT,
showing annular shroud, turbine, tethers, and ground station
(Adapted from Ref. [5])

Fig. 1 AWE systems that have been implemented at full scale, including the (a) KITEnrg sys-
tem [4], (b) Altaeros BAT [5], and (c) Google-owned Makani Power prototype [1]
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rear (aft) of the lifting body. The other two are attached on either
side (port and starboard) of the front of the lifting body. While the
BAT is nominally designed for stationary flight, the cross section
of the annular shell is composed of lifting airfoils, thereby
producing the aerodynamic forces that make it possible to realize
increased power generation under crosswind motion.

2.1 Dynamic Model. The dynamic scaling analysis described
in this paper is based on a relatively simple model, discussed in
Ref. [17], that captures the key variables involved in the
AWE system but does not possess the fidelity of real flight
experiments. Hence, the model contains the necessary information
for conducting a dynamic scaling analysis; nevertheless, it is by
no means a replacement for experiments.

The model of Ref. [17], which is derived using a Euler–
Lagrange approach, approximates the three tethers as a single
tether of length Lt and a spherical bridle joint as shown in Fig. 3.
This approximation results in a model that is fully described by
ordinary differential equations, without algebraic constraints. The
model derived therein has the form

DðQÞ €Q þ CðQ; _QÞ _Q þ GðQÞ ¼ sðQ; _Q; vwind;wwindÞ (1)

X ¼ f ðQ; _QÞ (2)

X ¼ gðQ; _QÞ (3)

where vwind is the wind speed, wwind is the wind heading, and

Q ¼ ½U K W Lt h0 /0� (4)

X ¼ ½xg yg zg _xb _yb _yb� (5)

X ¼ ½/ h w p q r� (6)

The azimuth angle, U, zenith angle, K, tether twist angle, W, and
mean tether length, Lt, are shown in Fig. 3. The vector X includes
the ground frame positions, denoted by the subscript “g,” and the
body frame translational velocities, denoted by the subscript “b.”
The vector X includes the rotational degrees-of-freedom (Euler

angles), along with the body frame rotational velocities. The
quantities h0 and /0 are termed the induced pitch and the induced
roll, respectively. Along with yaw, they describe the orientation of
the lifting body relative to its position vector. These angles are
approximately related to the tether lengths by

/0 ¼ tan�1 l3 � l2

llat
sep

 !
(7)

h0 ¼ tan�1 l1 � 0:5 l2 þ l3ð Þ
llong
sep

 !
(8)

where llong
sep and llat

sep are longitudinal and lateral tether attachment
separation distances, respectively. This approximation, wherein
we model a three-tether system using a single link plus two rota-
tional degrees-of-freedom, allows us to model the AWE system
using ordinary differential equations, rather than differential alge-
braic equations. The control inputs are the tether release speeds,
ui; which are related to the tether lengths by

ui ¼
d

dt
li (9)

For the full-scale system, the tether speed commands are real-
ized through a variable frequency drive system. For the lab-scale
system, the tether release speed commands are realized through
direct current (DC) motors whose input voltages are proportional
to the tether release speeds.

2.2 Basic Flight Control. The goal of the BAT’s control sys-
tem is to use three tethers to impart desirable flight characteristics
to the system. In the case of stationary flight, this involves using
the three tethers to keep the altitude, pitch angle, and roll angle
fixed at desirable values. For crosswind flight, detailed in Sec. 2.3,
the side tethers will be used to periodically alter the roll angle set-
point for the purpose of power augmentation.

The use of three tethers enables direct control of three quanti-
ties. Pitch, h, is controlled by spooling out on the aft tether while
spooling in on the front tethers, or vice versa. Roll, /, is con-
trolled by spooling out on the port tether and spooling in on the
starboard tether, or vice versa. Altitude, zg, is controlled by spool-
ing all tethers in or out simultaneously. Each of three controllers,
namely, the altitude controller, pitch angle controller, and roll
angle controller, is composed of a lead filter (i.e., a filtered propor-
tional plus derivative controller). A block diagram of the control
strategy is shown in Fig. 4. The individual controller transfer func-
tions are

Fig. 3 Comparison of full-scale system (left) with dynamic
model approximation (right) which treats the three-tether sys-
tem as a single tether with a spherical bridle joint

Fig. 4 Block diagram of the flight control strategy showing set-
points zsp, hsp, and /sp , tether release speed commands, u1, u2,
and u3 as well as the measured altitude, pitch, and roll zg;m, hm,
and /m
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Cz sð Þ ¼ kdzsþ kpz

szsþ 1

Ch sð Þ ¼
kdhsþ kph

shsþ 1

C/ sð Þ ¼ kd/sþ kp/

s/sþ 1

(10)

The signals produced by the individual controllers are com-
bined to produce tether release speed commands, which are
related to v1, v2, and v3 through a linear combination (see Fig. (4))
where

A ¼
1 �1 0

1 1 1

1 1 �1

2
4

3
5 (11)

Because there exists a pure integrator between the motor volt-
age commands and the tether lengths (l1, l2, and l3, which dictate
rz, h, and /), an integrator is not included in the controller itself,
as it is unnecessary for tracking sufficiently slowly varying com-
mands and would lead to reduced stability margins if included.

2.3 Crosswind Augmentation. The Altaeros BAT, which is
used as a case study in this work, is designed for nominally sta-
tionary operation; thus, it does not possess the high lift/drag ratios
and nimble dynamics of some other lifting bodies, which are
required to realize several times as much power under crosswind
flight than in stationary operation. Nevertheless, its annular design
does allow for significant lift and side force, thereby allowing for
moderately increased power production under crosswind motions.

During crosswind flight, the wind speed delivered to an air-
borne turbine, va, is a combination of the wind velocity vector vf

and the velocity vector of the turbine v. It is computed by a simple
vector difference. This is shown in Fig. 5 (left) and given by

va ¼ jvf � vj (12)

To characterize the benefit of crosswind flight, it is beneficial to
introduce a measure that compares the energy generation potential
under crosswind motion to that which could be achieved under
stationary operation with the same equipment. That comparison is
quantitatively characterized in this work by the power ratio, P.
The power ratio characterizes the amount of additional power that
can be created by the crosswind motion as compared with the
power that could be generated by the same turbine under

stationary flight, assuming that the turbine is operating below its
rated wind speed at all times. This ratio is given by

P tð Þ ¼ PGenerated tð Þ � PControl tð Þ
PStationary tð Þ

¼

1

2
qv3

aArefCp �
X3

i¼1

kw ui tð Þð Þsi tð Þui tð Þ

1

2
qv3

f ArefCp

(13)

where q represents the fluid density, Cp represents the turbine’s
power coefficient, Aref represents the rotor area, and si represents
individual tether tensions. The term kwðuiðtÞÞ represents a lumped
winch efficiency term (accounting for regenerative capabilities)
given by

kw ui tð Þð Þ ¼
� 1

gm

; ui tð Þ < 0

�gg; ui tð Þ � 0

8><
>: (14)

where gm and gg represent the motor efficiency and regenerative
efficiency, respectively.

To induce crosswind flight, the BAT is rolled to the side as
shown in Fig. 5 (right). This results in a sideways component of
the aerodynamic lift vector, causing the BAT to move laterally,
thereby inducing crosswind motion. One method to implement
this strategy is to hold zsp and hsp constant, while /sp is varied
periodically, according to a square wave profile given by

/sp tð Þ ¼
a0; kT � t < kT þ T

2

�a0; kT þ T

2
� t < k þ 1ð ÞT

8><
>: (15)

for k 2N. The amplitude, a0, and period, T, represent tunable
parameters that have a significant impact on the energy that can
be produced through crosswind flight trajectories.

3 Lab-Scale Experimental Setup

This work is based on a small-scale setup for characterizing the
dynamics and control of an AWE system in a 1 m� 1 m water
channel, as shown in Fig. 6. Three-dimensional (3D) printed mod-
els, whose cross-sectional areas comprise less than 1.5% of the
total water channel cross-sectional area, are tethered and “flown”
in the water channel. For the full-scale system, resolving position
and orientation simply involves a global positioning system and
inertial measurement unit. Since that equipment is impractical for
a small-scale model in water, it was necessary to replace the
motion capture system with a wholly different system. The
method of motion capture presented here produces the same out-
puts as the full-scale system, namely, the position and orientation
of the BAT. This makes it possible to accurately model the struc-
ture of the controller used at full scale. Figure 7 shows a detailed
comparison between the control strategies of the full-scale and
lab-scale systems.

During an experiment, an individual model is tethered and
“flown” in the water channel experimental setup shown in Fig. 6.
The experimental equipment consists of three DC motors for tether
actuation, three high-speed cameras for image acquisition, and a
high-performance host/target computer pair for real-time motion
capture and closed-loop control. The motor time constants for the
micro-DC motors used in this work are more than an order of mag-
nitude faster than the desired closed-loop system time constants.
The image processing and real-time controller are executed on a
dedicated personal computer, using Mathworks (Natick, MA) SIMU-

LINK Real-Time
VR

software. The system uses Basler ACE 340 km
grayscale cameras to obtain the images of the model.

Fig. 5 Top-down (left) and frontal view of AWE system (right)
depicting the method of inducing crosswind flight. The top-
down view shows free stream velocity of fluid flow, vf , velocity
vector of model, v, and velocity vector of apparent wind as
experienced by the model va . The frontal view shows how the
aerodynamic lift vector generates significant lateral force when
the model is rolled.
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The use of three cameras at different orientations (two perpen-
dicular to the flow and one at a 45 deg “slant” underneath the
water channel) provides sufficient imaging data for resolving both
the position and orientation of the model. In this work, the model
position vector, r ¼ ½xg yg zg�, points from the origin of the
ground-fixed coordinate system to the origin of the body-fixed

coordinate system at the models center of mass. The model orien-
tation (attitude) is characterized through roll (/), pitch (h), and
yaw (w) Euler angles.

In order to design a controller capable of producing crosswind
flight, it is necessary to resolve the position and orientation of the
model in real time. A schematic representing the system is shown
in Fig. 8. It shows the ground-fixed coordinate system, denoted by
the subscript “g,” as well as the body-fixed coordinate system,
denoted by the subscript “b.” All of the key variables used in this
work are summarized in Table 1.

The unit vectors representing the body fixed x, y, and z axes are
represented as three-component vectors in the ground-fixed
system. Figure 8 also shows the lengths of the center tether, l1,
starboard tether, l2, and port tether, l3.

In characterizing a crosswind flight trajectory, it will be con-
venient to examine the azimuth angle, which is shown in Figs. 3
and 8 and is defined as

U ¼ arctan
yg

xg
(16)

Fig. 7 Comparison of the control structure of lab-scale and
full-scale system. The new, enhanced motion capture and
image processing algorithms detailed in this paper are located
in the feedback loop of the lab-scale system. While the plant
and feedback instrumentation differ between setups, the con-
troller does not. The variable, pi , is a matrix containing four sca-
lars, the x and y pixel coordinates of each set of dots within the
image imgj. This is explained in detail in Sec. 3.1.

Fig. 8 Schematic depiction of three-tether AWE system based
on the Altaeros BAT with zero roll, pitch, and yaw, including
camera locations, tether lengths (li), and azimuth angle (U)

Fig. 6 Image of experimental equipment showing the water
channel, host computer, target computer, DC motors (inset left),
scale model, and video cameras. The DC motors and tether
spools are located above the water channel, outside the frame
of the main image.

Table 1 Relevant variables and descriptions

Variable Description Units

r Position of model cm
v Velocity of model cm � s�1

vf Free stream flow velocity cm � s�1

va Velocity of apparent wind cm � s�1

U Azimuth angle —
K Zenith angle —
/; h;w Roll, pitch, and yaw angles —
x̂b; ŷb; ẑb Unit vectors of body-fixed coordinate system cm
l1; l2; l3 Center, starboard, and port tether lengths cm
r1; r2; r3 Camera #1, #2, and #3 positions in ground-fixed

coordinates
cm

u1; u2; u3 Commanded tether release speeds cm � s�1
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The azimuth angle characterizes the extent by which the lifting
body deviates from a direct downwind configuration. Under suc-
cessful crosswind flight, U will exhibit periodic oscillations about
U¼ 0.

3.1 Motion Capture System. Successful crosswind flight in
the lab-scale setup requires continuous, accurate measurements of
the lifting body’s position and orientation (attitude). This means
that the three cameras depicted in Fig. 8 must continually track
the white dots on the model, as shown in Fig. 9. A basic
threshold-based image processing algorithm was implemented in
the previous work [22], for accomplishing this on a stationary
AWE system; however, successful motion capture for crosswind
flight places increasing demands on the underlying image process-
ing algorithms, as they must track a fast-moving system under
varying lighting conditions. The enhanced system has augmented
the effective field of view and increased the degree of dynamic
behavior that can be accurately tracked. This subsection details
the enhanced motion capture system that has been implemented
for these purposes, which consists of two key steps:

(1) Dot centroid detection in a single still frame.
(2) Derivation of AWE position and orientation from dot cent-

roid locations.

The location of this improved motion capture algorithm within
the overall control scheme is shown in the feedback loop of the
lab-scale system in Fig. 7.

3.1.1 Dot Centroid Detection. The first step in resolving the
position and orientation of the model is to locate the visual targets
(white dots) in each of the source images. To decrease processing
time, a small region of interest (ROI) is first extracted from the
source image for each camera. This ROI matrix G is a two-
dimensional matrix of gray-scale values ranging from 0 to 255.
To classify each pixel in the ROI as belonging to a dot or the
background, a threshold-based technique known as Otsu’s method
[25] is used. This method works by generating an intensity histo-
gram from the ROI matrix and then calculating the intra-class

variance, r2
w for each intensity value n. The intra-class variance is

defined in the following equation:

r2
wðnÞ ¼ x2

LðnÞr2
LðnÞ þ x2

RðnÞr2
RðnÞ (17)

Here, xL is the weighted probability of the class to the left of the
point being considered on the histogram and xR is the weighted
probability of the class on the right of the point being considered
on the histogram. Variances appear in Eq. (17) as r2

L and r2
R.

These represent the variance of the left and right classes, respec-
tively. It is shown in Ref. [25] that the value n0 that minimizes r2

w

n0 ¼ arg min
n0
fr2

wðn
0Þg (18)

is an accurate approximation of the best threshold level. Based on
n0, all pixels in the ROI are classified as 1 or 0 in a binary matrix,
B, whose entries are specified as follows:

Bij ¼
1; Gij � n0

0; otherwise

�
(19)

The binary matrix is divided either horizontally or vertically
(depending on which camera and ROI is being considered) into
two smaller matrices, B1 2 Rm1�n1 and B2 2 Rm2�n2 . The precise
dividing line between the two matrices is based on the horizontal
or vertical centroid location of B (horizontal if the matrix is
divided horizontally; vertical if the matrix is divided vertically).
Once B1 and B2 have been obtained, coordinates of the dot cen-
ters, denoted by xc1; yc1; xc2; and yc2, are located by calculating
individual components of a discrete two-dimensional geometric
centroid according to the following equation:

xc1 ¼

Xm1

i¼0

Xn1

j¼0

jb1ij

Xm1

i¼0

Xn1

j¼0

b1ij

; yc1 ¼

Xm1

i¼0

Xn1

j¼0

ib1ij

Xm1

i¼0

Xn1

j¼0

b1ij

xc2 ¼

Xm2

i¼0

Xn2

j¼0

jb2ij

Xm2

i¼0

Xn2

j¼0

b2ij

; yc2 ¼

Xm2

i¼0

Xn2

j¼0

ib2ij

Xm2

i¼0

Xn2

j¼0

b2ij

(20)

Here, b1ij is the component located in the ith row and the jth
column of the first binary matrix, B1, and b2ij is the component
located in the ith row and the jth column of the second binary
matrix, B2. The individual position components are then trans-
formed back into coordinates in the original image by simple
addition with the position coordinates of the ROI within the over-
all image.

This procedure is performed four times on three different
source images at every time-step. As depicted in Fig. 8, camera #2
tracks dot sets 2 and 3, which are located on the bottom of the
model, as shown in Fig. 9. Camera #1 tracks dot set #1, which is
located on the side of the model, and camera #3 tracks only dot
set # 3. This produces four vectors pi 2 R4 given by

pi ¼ ½xi
c1 yi

c1 xi
c2 yi

c2� (21)

where the index i 2 f1; 2; 3; 4g specifies the combination of cam-
era and dots being tracked.

3.1.2 Derivation of Orientation and Position. Each set of dots
is aligned with either the body-fixed x or y axis; specifically, two
of the ROIs track dots oriented along the xb axis, whereas the
other two track dots that are oriented along the yb axis. Table 2
delineates the precise geometric information that is provided by
each camera and each set of dots. This information is sufficient

Fig. 9 Image of 3D printed, 1:100 scale model of the Altaeros
BAT (approximately 8 cm in length), showing image tracking dot
sets as well as two of the three tether attachment points. The
starboard tether attachment point is not visible in the image.
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for the calculation of the unit vectors x̂b and ŷb in ground-fixed
coordinates. Once x̂b and ŷb have been determined, ẑb is deter-
mined from a simple cross product; specifically, ẑb ¼ x̂b � ŷb.
The complete set of body-fixed unit vectors in the ground-fixed
coordinate system forms the columns of a rotation matrix that enc-
odes the Euler angles, namely, roll (/), pitch (h), and yaw (w).

Because the position of the model is necessary to determine the
conversion factor between pixels and distance, and because posi-
tion is required for dynamic characterization and flight control, r
is also computed at each time-step. This is accomplished by using
the location of each group of dots in each frame to provide a
measurement relative to the centerline of the camera view. The
individual components of the position vector r satisfy the system
of equations given by the following equation:

rx ¼ r2;x �
NV

2
� vdots;2

� �
jr2 � rjð Þ 2 tan c

NV

� �

ry ¼ r2;y þ
NH

2
� hdots;2

� �
jr2 � rjð Þ 2 tan c

NH

� �

rz ¼ r1;z �
NV

2
� vdots;1

� �
jr1 � rjð Þ 2 tan c

NV

� � (22)

where r2;x is the x component of the bottom, upstream camera
position vector, r2;y is the y component of the bottom upstream
camera position vector, and r1;z is the z component of the side
camera position vector. Furthermore, NH and NV are the number
of horizontal and vertical pixels in an image, and c is the view
angle of the camera relative to the centerline. The position of the
dots within each frame is denoted as vdots;1 for the vertical position
of the dots in the frame from the bottom upstream camera, hdots;2

for the horizontal position of the dots in the frame from the bottom
upstream camera, and vdots;1 for the vertical position of the dots in
the frame from the front camera. Note that the vertical position in
the frame is measured from the top of the image down.

Because this system relies on digital images, it produces quanti-
zation error. In general, the magnitude of this error will be a non-
linear function of the true position and orientation. However, it is
possible to provide an estimate of the typical (average) value of
this error, which will not vary by more than approximately 10%
over the course of flight. Typically, the total distance between dot
centers in an image is image approximately 80 pixels. Therefore,
the quantization error in orientation, calculated through a simple
arc tangent, is approximately 0.7 deg. The quantization error in
position can be approximated by using the derivative of Eq. (22)
with respect to r. For a set of dots in the middle of the camera
field of view, and the center of the water channel, it is found to be
approximately 1 mm.

4 Dynamic Scaling Analysis for Lab-Scale/Full-Scale

Equivalence

In order to compare the closed-loop dynamic behavior across
model scales, we utilize the Buckingham-Pi theorem of Ref. [26]
to derive relationships that describe how to appropriately scale
plant and controller parameters. Although the dynamic model
detailed in Eqs. (1)–(6) does not provide the level of detail that

actual flight tests provide (hence the desire for an experimental
setup), it does provide enough information to identify key varia-
bles in the system dynamics which is essential for applying the
Buckingham-Pi theorem. This section first reviews the methods
and results of Ref. [23], which are used to scale the plant. Then,
we derive a new set of scaling laws that describe how the control-
ler of the lab-scale system should be scaled to achieve dynamic
equivalence. Together, these two sets of scaling laws provide a set
of guidelines for achieving dynamic similarity between the lab-
scale and full-scale systems under closed-loop control.

4.1 Dynamic Scaling Analysis of Plant Parameters. Start-
ing with the dynamic model detailed previously, Ref. [22] identi-
fies several key plant parameters. For completeness, these results
are summarized here. A list of key dimensional plant parameters
identified from the dynamic model are detailed in Table 3. Using
the Buckingham-Pi theorem [26], these parameters are then
related to each other via the set of nondimensional groups

Lc

Lt
;
Lt

dt
;
L3

t q
Ma

;
kLt

Ma
;
gLt

V2
;
Lt

_U
V
;
L2

t
€U

V2
;
Lt

_K
V

;
L2

t
€K

V2
;
Lt

_W
V

;
L2

t
€W

V2

( )
(23)

which must remain constant across model scales in order to ensure
dynamic similarity. However, in these dimensionless groups, there
is a direct variation of the velocity and length scales, thus render-
ing it impossible to vary both flow speed and length scale while
simultaneously maintaining dynamic equivalence according to the
sixth through eleventh dimensionless variables in Eq. (23). This
contradiction can be resolved by introducing a normalized time, �t,
which is related to absolute time, (t), through a scalar parameter, a

�t ¼ at; a / 1ffiffiffiffiffi
Lc

p (24)

This relationship reflects uniformly altered time constants (altered
through the “stretching” factor, a), at small scale versus full-scale.
The new dimensionless groups, where derivatives are calculated
relative to the normalized time, �t, are

Lc

Lt
;
Lt

dt
;
L3

t q
Ma

;
kLt

Ma
;
�gLt

�V
2
;Lt

dU
d�t

�V ;
L2

t

d2U

d�t2

�V
2

;Lt
dK
d�t

�V ;

8><
>:

L2
t

d2K

d�t2

�V
2

; Lt
dW
d�t

�V ;
L2

t

d2W

d�t2

�V
2

; �t

9>>=
>>;

(25)

Table 2 Resolution of specific body-fixed unit vector
components

Unit vector Component Camera Dot set

x̂b xg 1 1
x̂b yg 2 3
x̂b zg 1 1
ŷb xg 2 2
ŷb yg 2 2
ŷb zg 3 2

Table 3 Physical dependencies used to describe the charac-
teristics of the lifting body as identified from the dynamic
model

Parameter Variable Units

Mean tether length Lt m
Aerodynamic chord length Lc m
Tether diameter dt m
Mass of aerostat Ma kg
Fluid density q kg �m�3

Wind or flow speed vf m � s�1

Gravitational acceleration g m � s�2

Azimuth rate of change _U s�1

Azimuth acceleration €U s�2

Zenith rate of change _K s�1

Zenith angle acceleration €K s�2

Tether twist angle rate of change _W s�1

Tether twist acceleration €W s�2

Linear tether density k kg �m�1
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These dimensionless groups lead to the following guidelines for
achieving dynamic similarity:

(1) Individual tether lengths l1, l2, and l3 must be scaled by the
same factor as the model length, thereby maintaining geo-
metric similarity.

(2) Net buoyancy ðFbouyant=mgÞ must be preserved at lab-scale
and full scale.

(3) Taking L as the length-scale factor (i.e., a 1:100-scale
model would have L ¼ ð1=100Þ), flow speed should be
scaled according to the square root of L, i.e., vf /

ffiffiffi
L
p

vfull,
where vfull is the target velocity of the full-scale system for
which we wish to replicate flight characteristics. This scal-
ing rule ensures preservation of the fifth dimensionless
group (the inverse of the Froude number squared) at scale.

These scaling rules are valid under two assumptions:

(1) Mass distribution is identical at lab-scale and full-scale,
which means that the moments of inertia are completely
determined by the mass and scale factor, L. This assump-
tion is satisfied through proper design of 3D printed
models.

(2) Aerodynamic coefficients are independent of the Reynolds
number within the Reynolds number ranges seen in the
water channel (75,000 at a 1 m/s flow speed, using chord
length as the reference length) and full-scale system
(5,000,000 at a 10 m/s wind speed). Hence, the viscosity of
the medium is neglected as a physical dependency. The
approximate validity of this assumption has been verified
experimentally in Ref. [23] for the Altaeros BAT.

4.2 Dynamic Scaling Analysis of Controller Parameters.
In order to compare dynamic behavior under closed-loop control
across model scales, it is necessary to extend the dimensional
analysis of Ref. [23] to include controller parameters. From the
controller detailed in Eq. (10) and Fig. 4, we identify the gains,
time constants, and setpoints of the controllers as the relevant

parameters. A detailed explanation of each parameter, along with
associated units, is provided in Table 4.

The next step in Buckingham-Pi analysis is to derive dimen-
sionless groups. Since kdz, hSP, and a0 are already dimensionless,
they can be removed from the analysis, and the resulting analysis
produces 11 dimensionless groups

Lc

ZSP
;

Lc

kdh
;

Lc

kd/
; tkpz;

vf

kph
;

vf

kp/
;

vf

vsat
l

;
t

sz
;

t

sh
;

t

s/
;

t

T

� �
(26)

Given the analysis results of Eqs. (24) and (25) in Sec. 4.1, which
demonstrate that time (and all time constants) scale according to
t /

ffiffiffiffiffi
Lc

p
, along with the results of Eq. (26), we arrive at the fol-

lowing scaling laws:

(1) Scale the derivative gains of the roll and pitch controllers,
kdh and kd/, according to the length scale, Lc.

(2) Scale the proportional gains of the roll and pitch control-
lers, kph and kp/, along with the tether speed saturation
limit, vsat

l according to
ffiffiffiffiffi
Lc

p
.

(3) Scale the proportional gain of the altitude controller, kpz,
according to ð1=

ffiffiffiffiffiffi
LC

p
Þ.

(4) Scale the filter time constants, sz;h;/ as well as the roll set-
point period, T, according to

ffiffiffiffiffi
Lc

p
.

Under the aforementioned scaling laws for both the plant and
the controller, the full-scale dynamic behavior will be replicated
at lab scale with the only exception being uniformly accelerated
time constants. In particular, the lab-scale time constants will
scale uniformly according to the square root of the length
scale, i.e., s /

ffiffiffiffiffi
Lc

p
, where s represents any system time constant

(Table 5).

5 Experimental Validation Results and Discussion

To experimentally evaluate crosswind flight and dynamic simi-
larity at different scales, we consider three different scale models,
as shown in Fig. 10, rather than comparing a single lab-scale
model to a full-scale model (which we have very limited access to
and no means of controlling the experiment, since wind is ran-
dom). These models are termed the small, medium, and large
models. The small-scale model has a chord length, Ls

c, equal to

Table 4 Controller parameters that impact dynamic behavior
of crosswind flight

Parameter Variable Units

Roll controller proportional gain kp/ m � s�1

Pitch controller proportional gain kph m � s�1

Altitude controller proportional gain kpz s�1

Roll controller derivative gain kd/ m
Pitch controller derivative gain kdh m
Altitude controller derivative gain kdz —
Roll controller time constant s/ s
Pitch controller filter time constant sh s
Altitude controller filter time constant sz s
Pitch setpoint hSP —
Altitude setpoint ZSP m
Roll setpoint amplitude a0 —
Roll setpoint period T s
Tether release/retract speed limit vsat

l m � s�1

Table 5 Relationship of experiments for the small, medium, and large models at two different flow speeds

Model
size

Flow speed,
vf ðcm=sÞ

Normalized flow
speed, �vf ðcm=sÞ

Flow
speed index

Roll setpoint
period range ðsÞ

Normalized roll setpoint
period range ðsÞ

Small 22.0 25.4 A 4.330–7.578 5.000–8.750
Medium 25.0 25.0 A 6.000–8.750 6.000–8.750
Large 28.0 25.0 A 6.708–10.90 6.000–9.750
Small 16.5 19.1 B 4.330–6.495 5.000–7.500
Medium 18.8 18.8 B 4.500–8.500 4.500–8.500
Large 21.0 18.8 B 6.708–9.783 6.000–8.750

Fig. 10 Three different scale models of the Altaeros BAT. The
smallest (left) has a characteristic length that is 75% of the char-
acteristic length of the 1:100 model (middle). The largest (right)
has a characteristic length that is 125% of the characteristic
length of the 1:100 model (middle).
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75% of the chord length of the medium-scale model, Lm
c , and the

large-scale model has a chord length, Ll
c, equal to 125% of the

medium-scale model. The medium model is a 1:100 scale model
of the 2013 Altaeros BAT prototype. The largest of these models
presents a blockage ratio of approximately 1.5% in the UNC
Charlotte water channel.

Each of the three scale models was subjected to the crosswind
flight control algorithm of Sec. 2.3 at two different flow speeds,
for a duration of at least 20 periods corresponding to between 90 s
and 210 s depending on the roll setpoint period being tested. This
was found to be sufficient for the mean power ratio to converge.
At both normalized flow speeds, each model was subjected to
between 11 and 18 experiments wherein some experiments were
run multiple times to ensure consistency. Periods were chosen to
provide a normalized period resolution of 0.25 s. The organization
of individual experiments is shown in Table 6. Note that the exact
matching of normalized flow speeds is limited by quantization
of the flow speed measurement, which is discussed in detail in
Sec. 5.4.

The results presented in this section have three purposes:

(1) To demonstrate successful crosswind flight at many differ-
ent operating conditions and model scales.

(2) To validate previously derived dynamic scaling laws for
the controller parameters.

(3) To demonstrate an increase in power production potential
from crosswind flight, quantified by the power ratio of
Eq. (13).

5.1 Dynamic Scaling of Controller for Experiments. In
order to compare between models, we relate the normalized time,
�t, of the large and small models to the normalized time of the
medium model using the relationship provided in Ref. [23]. Spe-
cifically, �t ¼ at, where a /

ffiffiffiffiffi
Lc

p
. Normalized times are calculated

as

�ts ¼ ast; �tm ¼ amt; �tl ¼ alt (27)

For the chosen model scales, this resulted in

as ¼ 1:15s�1; am ¼ 1s�1; al ¼ 0:894s�1 (28)

During the course of a single experiment, the controller for
each model was held constant. It was then varied across model
scales according to the scaling laws derived in Sec. 4.2, using the
scale factors of Eq. (28). The exact values used for controller
parameters are given in Table 7.

5.2 Comparison of Time-Dependent Quantities. In order to
compare individual quantities such as roll, yaw, or azimuth under
crosswind flight, it is also necessary for the normalized period of
the roll setpoint to be the same across all three model scales. By
characterizing each model over the same range of normalized
crosswind periods, we are able to compare the dynamic behavior
during crosswind flight across all three model scales. An example
of this comparison for a single normalized roll setpoint period is
shown in Figs. 11–13. For each of the curves in Figs. 11–13, the
average of the three curves was calculated, and the mean squared

error from this averaged was subsequently calculated, in order to
provide a signal variance that quantified the closeness of the curve
to the mean. The signal variances for each of the experiments
are reported in Table 6. These results demonstrate that the

Table 6 Variance (with respect to the mean curve) for data presented in Figs. 11–13

Model size Normalized Roll angle variance (rad2) Yaw angle variance (rad2) Azimuth angle variance (rad2)

Small No 0.0209 0.0309 0.0756
Small Yes 0.00949 0.00463 0.0141
Medium No 0.0221 0.0365 0.0971
Medium Yes 0.00533 0.00809 0.0207
Large No 0.0228 0.0287 0.108
Large Yes 0.00913 0.00903 0.0462

Table 7 Constant controller parameters for the small, medium,
and large models as related through dynamic scaling laws

Parameter
Value–small

model
Value–medium

model
Value–large

model

kp/ 8.66 10.0 11.18
kph 4.33 5.00 5.59
kpz 0.115 0.10 0.089
kd/ 2.25 3.00 3.75
kdh 0.75 1.00 1.25
kdz 0.00 0.00 0.00
s/ 0.13 0.15 0.168
sh 0.173 0.20 0.224
sz 0.217 0.250 0.280
hsp 5.00 5.00 5.00
zsp 45.0 60.0 75.0
a0 15.0 15.0 15.0
vsat

l 0.0677 0.0606 0.0524

Fig. 11 Comparison of controlled roll angle plotted against
time, t (top), and normalized time, �t (bottom)

Fig. 12 Comparison of uncontrolled yaw angle plotted against
time, t (top), and normalized time, �t (bottom)
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time-dependent, nondimensional quantities of roll angle, heading
(yaw angle), and azimuth angle exhibit very similar amplitudes,
phase shifts, frequencies, and nondimensionalized transient response
characteristics across all scales.

5.3 Comparison of Aggregate Quantities. Mean power
ratio, �P, was measured for each of several roll setpoint periods,
for flow speeds A and B, using Eq. (13). This means power ratio
is given by

�P Tið Þ ¼
1

tf � t0

ðtf

to

P t;Tið Þdt (29)

where the instantaneous power ratio, Pðt; TiÞ, is given by Eq. (13).
For this analysis, we took Cp ¼ 0:5; gm ¼ 0:9; gg ¼ 0:75;
As

ref ¼ 11 cm2; Am
ref ¼ 20 cm2, and Al

ref ¼ 31 cm2. Because we did
not have direct measurements of individual tether tensions, and
because estimating tether tension from a model-based method
such as finite element analysis is a challenging and complex prob-
lem outside the scope of this work, it is necessary to approximate
the individual tether tensions in Eq. (13) through a simple, quasi-
static model based on known fluid dynamic and buoyancy charac-
teristics of the system (which drive the tensions). Specifically, we
approximated individual tether tensions by

si tð Þ ¼ 1

3
FL hð Þcos K� hð Þ þ FD hð Þsin K� hð Þ þ Fb cos Kð Þ
� �

(30)

where Fb represents the net buoyant force. The net lift and drag
forces, FL and FD, were estimated based on known characteriza-
tions of the lifting body. It is important to note that this method
contains many simplifying assumptions, and therefore, should be
considered as a coarse estimate for the purpose of illustration.
Nonetheless, for the results shown here, the magnitude of the
control power calculated via Eq. (30) rarely exceeded 5% of the
power generated or about 25% of the excess power created
through crosswind flight.

A curve was then fit to the data for �P as a function of the cross-
wind period, T, using an exponentially weighted regression func-
tion. An example form of this function for the small model at flow
speed A is given by

P̂
s

AðTjT
s
A;P

s
AÞ ¼

Xg

i¼1

wðTjTs
AÞ �P

s
i;A (31)

where T
s
A ¼ fTs

1;A; T
s
2;A;…;Ts

g;Ag is the set of all roll setpoint peri-

ods tested for flow speed A, Ps
A ¼ f �P

s
1;A;

�P
s
2;A;…; �P

s
g;Ag is the set

of corresponding measured mean power ratios given by Eq. (13),
and g 2N is the number of periods tested for the small model at
flow speed A. The individual weight for a particular roll setpoint
period, T, wðTjTs

AÞ, is given by

w TjTs
A

� �
¼ e

�c T�Ts
i;Að Þ2

Xg

i¼1

e
�c T�Ts

i;Að Þ2
(32)

where c is a tuning parameter, chosen to be 5 s�2 in this work.
Equivalent equations for the best curve for the medium and large
models at specific flow speeds are given by changing the super-
script s to m or l and the subscript A to B as appropriate. The raw
data, along with the fit curves, are shown for both the mean power
factor and 85 percentile power factor in Fig. 14.

Fig. 13 Comparison of uncontrolled azimuth angle plotted
against time, t (top) and normalized time, �t (bottom)

Fig. 14 The top plots shows the measured mean power ratios, Ps
A;B ; Pm

A;B , or Pl
A;B plotted against the correspond-

ing set of roll setpoint periods T
s
A;B ; T

m
A;B , or T

l
A;B along with their associated best fit curves given by Eqs. (31) and

(32). The bottom plot shows the same for the power ratio 85th percentile.
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The experimentally identified scale factors for the small and
large models, relative to the medium model, âs and âl, were then
calculated as the scale factors that resulted in the best fit between
the power ratio curve of the small or large model and power ratio
curve of the medium model, as given by Eqs. (31) and (32). Spe-
cifically, âs and âl were calculated as the scale factors that mini-
mized the root-mean-square error in between the power ratio
regression of the large or small model and the power ratio regres-
sion of the medium model. For example, the expression for the
small model at flow speed A reads

âs¼ arg min
~a s

1

Tf �T0

ðTf

T0

kP̂s
Tj ~Ts

A;P
s
A

	 

� P̂

m
Tj �Tm

A ;P
m
A

	 

kdT

( )

(33)

where ~T
s

A ¼ f~asTs
1;A; ~a

sTs
2;A;…; ~asTs

g;Ag denotes the set of all nor-

malized roll setpoint periods for the small model at flow speed A

calculated using the variable scale factor ~as, and �T
m

A ¼
famTs

1;A; a
mTs

2;A;…; amTs
g;Ag denotes the set of all normalized roll

setpoint periods for the medium model at flow speed A calculated
using the nominal scale factor am calculated directly from the
length scale, given in Eqs. (27) and (28). Note that since

am ¼ 1; �T
m

j ¼ T
m
j 8 j 2 fA;Bg.

The limits on the integral of Eq. (33) bound the region where
the curve fits overlap and will also depend on ~as. Specifically

T0 ¼ maxfminf ~T
s

Ag;minf �T
m

Agg (34)

Tf ¼ minfmaxf ~T
s

Ag;maxf �T
m

Agg (35)

Plots of the best fit curve for the mean power factor of the small,
medium, and large models are shown by the darker curves in
Fig. 14. The average power ratio is limited by frequent tacking,
which arises due to tether length limitations in the water channel.
In fact, the bottom plots of Fig. 14 show the 85th percentile power
ratio, demonstrating that the system indeed achieves power ratios
close to two over substantial portions of the crosswind motion.
Maximizing the fraction of crosswind flight over which these
larger power ratios are realized represents an important topic of
ongoing control design research.

We compare the measured scale factors, given by Eq. (33), âs

and â l to the predicted values, as and al, calculated directly from
the characteristic lengths in Table 8. Figure 15 shows plots of the
power ratio as a function of the normalized roll setpoint period, as
calculated using both the predicted and measured scale factors.

5.4 Discussion and Error Analysis. Because the roll angle is
controlled to a setpoint that is scaled according to the known char-
acteristic lengths of the models, it is expected that the roll signals
will overlap well when the horizontal axis of Fig. 11 is normalized
using nominal scaling. Similarly, it is unsurprising that the yaw
and azimuth angles exhibit the same normalized frequencies

Table 8 Predicted and measured scale factors, slow flow speed

Model size Flow speed Predicted scale factor, a Experimentally identified scale factor, â Error (%)

Small B 1.15 1.30 13
Large B 0.894 0.846 5.4
Small A 1.15 1.22 6.7
Large A 0.894 0.806 10

Fig. 15 The top plot shows the power ratio plotted against the normalized roll setpoint period calculated from
nominal time scale factors, as, am, and al. The bottom plot shows the mean power ratio plotted against the normal-
ized roll setpoint period calculated by using the scale factors âs and â l given by Eq. (33).
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across different scales. The most significant result is the similarity
in amplitude and general transient response characteristics of the
uncontrolled signals, yaw, and azimuth. Because these quantities
are nondimensional, their magnitudes should be independent
of the model scale. This in fact conforms to the result shown in
Figs. 12 and 13.

The dynamic scaling laws derived in this work and Ref. [23] are
valid under the condition that all variables appearing the dimen-
sionless groups are scaled precisely. If any of these variables is not
scaled precisely, it can undermine the accuracy of the results. In
this work, there are three possible sources of significant error, all of
which relate to inherent limitations in the water channel setup.

First, imprecision in the flow speed measurement may have
resulted in variation of the dimensionless groups across experi-
ments. In this work, flow speed is measured by a point probe with a
resolution of 61.5 cm/s. Depending on which experiment is being
conducted, this corresponds to a possible error in the flow speed of
between 5.4% and 9.1%. The impact of this quantization-type error
is particularly visible in the normalized flow speeds of Table 6.

Second, camera lens distortion effects can have a nontrivial
effect on results. In particular, the approximations of Eq. (22) are
accurate when the tracking targets appear near the center of the
frame. Whereas lens distortion will cause them to become less
accurate as the model deviates from the center of the frame, as is
common with crosswind flight.

Finally, it is understood (and demonstrated in Refs. [21–23])
that the lateral stability of the model depends heavily on the
achieved pitch angle. Generally, higher pitch results in greater lat-
eral movement. Small inaccuracies in placement of the image
tracking targets on the models can result in slight differences
between the measured and achieved pitch angle across model
scales. This in turn can lead to inconsistencies between model
behavior at different scales.

6 Conclusions

This paper presented a framework for lab-scale control and
measurement of crosswind airborne wind energy systems. The
framework is capable of simultaneous control of altitude, pitch,
and roll, while measuring important variables upon which energy
generation depends. The paper followed with a detailed discussion
of crosswind flight performance across a range of model scales
and flow speeds, including experimental validation of the dynamic
scaling laws derived in this and previous work. Specifically, a
dynamic model-based dimensional analysis from Ref. [23] sug-
gested that properly scaled plant and controller parameters will
lead to dynamic equivalence across all model scales during
closed-loop control of crosswind flight. It was shown that the
dynamics scaled properly across a range of available model
scales, within experimental uncertainty.
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