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On Timescale Separation in
Networked Systems With
Intermittent Communication
This paper studies the multiple timescale behavior that is induced by dynamic coupling
between continuous-time and discrete-time systems, and that arises naturally in distrib-
uted networked systems. An order reduction method is proposed that establishes a mathe-
matically rigorous separation principle between the fast evolution of the continuous-time
dynamics and the slow updates of the discrete-time dynamics. Quantitative conditions on
the discrete update rate are then derived that ensure the stability of the coupled dynamics
based on the behavior of the isolated systems. The results are illustrated for a distributed
network of satellites whose attitudes evolve continuously while communicating intermit-
tently over the network. [DOI: 10.1115/1.4038096]

1 Introduction

In multi-agent systems, distributed graph-based protocols
between agents are often coupled to dynamic weight evolution
and tracking of the agents’ own nonlinear dynamics. One
approach to analyzing these types of complex systems is to
assume that the agents’ network communication occurs very
quickly, leading to a set of coupled, continuous-time dynamics
[1]. These purely continuous-time dynamics can then be collec-
tively designed to achieve desirable behavior [2,3]. However, this
approach can break down as the time between communication
updates becomes too large, leading to instability [4,5]. An alterna-
tive approach is to view the updates over the network as occurring
only intermittently. This produces an inherently hybrid-time char-
acter in the coupled dynamics, as shown in Fig. 1. Intuitively, if
the agents move quickly relative to the slow discrete updates over
the network, then they will reach their immediate goal, and the
network dynamics will evolve as if the agents are always at their
state-dependent equilibrium trajectory. This implies that, depend-
ing on the rate of updates, a decoupling is possible between the
fast, continuous-time agent dynamics and the slow, discrete-time
network dynamics that is based on the different characteristic
timescales over which the subsystems evolve. Such a separation
between the subsystem dynamics is useful because it has the
potential to decrease the complexity of analyzing the coupled
hybrid-time system, permitting the networked decision dynamics
to be designed separately from the agents’ dynamics. The ques-
tion, then, is under what conditions is this separation valid?

Concepts from singular perturbation theory provide an effective
approach for understanding such multiple timescale systems [6].
For purely continuous-time systems, singular perturbation theory
describes how slow and fast behaviors are induced when a small
parameter multiplies the time derivatives of a subset of the system
states. The Tikhonov–Levinson theorem then gives conditions
under which such a purely continuous-time system can be ana-
lyzed based on the properties of its isolated slow and fast dynam-
ics [6,7]. Application of these conditions to networked dynamical
systems, for example, has yielded graph-topological stability
bounds for the consensus-tracking and state-dependent graph
problems [8]. The success of the Tikhonov–Levinson conditions
for simplified analysis of continuous-time systems with slow and
fast behaviors has led to several extensions in the literature for

different classes of systems. These include: (1) discrete-time sys-
tems [9], (2) differential inclusions [10], (3) impulsive differential
equations [11,12], and (4) hybrid systems where the fast dynamics
are constrained to evolve on a compact set [13,14]. However, by
focusing on the role of a small parameter in inducing slow and
fast behaviors, these extensions do not consider how the update
rate can affect the behavior of coupled hybrid-time dynamics and
allow their analysis to be simplified.

This paper addresses the described research gap. In particular,
this work studies the role of the discrete update period on the
properties of coupled continuous-time and discrete-time dynam-
ics. The paper makes two main contributions. The first is a novel
reduced-order modeling technique, based on concepts of perturba-
tion and asymptotic theory, that provides mathematical rigor to
the intuitive notion of a separation principle in such hybrid-time
systems as the time between discrete updates grows. In particular,
conditions are derived under which the design of the discrete-time
dynamics can be separated from the behavior of the continuous-
time dynamics, and asymptotic bounds on the error that this
decoupled design introduces are explicitly computed in terms of
the update period. In the context of networked systems, these con-
ditions give insight into when a designer can choose the network-
based update algorithm independently from the behavior of the
individual agents. The second contribution is a set of quantitative
conditions that give a lower bound on the update rate under which
the coupled hybrid-time system is guaranteed to be stable, and
which are based on stability properties of the decoupled systems.
These techniques can be practically applied to understand the

Fig. 1 Evolution of the coupled discrete-time network states x
and continuous-time agent states y as the agents evolve toward
their state-dependent equilibrium h(x, t) over each interval
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effects of implemented communication rates on the behavior of
networked dynamical systems.

The structure of the paper is as follows: In Sec. 2, the hybrid-
time system under study is defined. Section 3 then develops
reduced-order models for the hybrid-time system and proves their
efficacy under appropriate conditions. Next, Sec. 4 presents the
method for finding quantitative stability bounds for the coupled
hybrid-time dynamics. An application to a distributed network of
satellites is illustrated in Sec. 5, and conclusions are presented in
Sec. 6.

2 Problem Formulation

Consider the class of systems defined by

x tþk
� �

¼ f x t�kð Þ; y tkð Þ; k; l
� �

; x t0ð Þ ¼ x0 lð Þ
_y tð Þ ¼ g x tþk

� �
; y tð Þ; t; l

� �
; y t0ð Þ ¼ y0 lð Þ

(1)

where the vector of discrete-time states is x 2 Dx � Rnx , the vec-
tor of continuous-time states is y 2 Dy � Rny , updates of the
discrete-time system occur at distinct times t1, t2,…, differences
between these distinct times are lower-bounded by tk–tk–1 � s >
0 for k 2 1; 2;…f g, and l¼ 1/s measures the corresponding fast-
est update rate. In the context of networked dynamical systems,
for example, y describes the agent states while x encodes the net-
work states that update at time tk. Here, the dependence on l in
the last argument of f and g captures possible changes in the vec-
tor fields due to a change in the update rate. Similarly, the depend-
ence of x0 and y0 on l is included to capture possible changes in
the initial conditions due to a different update rate being used. Of
course, g, f, x0, and y0 may not change with the update rate in a
particular system, but including this potential dependency on the
update rate allows the ensuing results to be applied to a wider
class of systems. To pose a well-defined problem, assume that:

ASSUMPTION 1. The functions g, f, x0, and y0 are O 1ð Þ as s!1
in the domains Dy and Dx.

ASSUMPTION 2. The function g is continuously differentiable in
all its arguments and the functions f, x0, and y0 are Lipschitz in
their arguments over the domains Dy and Dx.

3 Reduced-Order Modeling

In this section, two reduced-order models are formulated for the
hybrid-time system (1). The validity of these models in approxi-
mating the behavior of Eq. (1) is then rigorously proven, justifying
the separate design of the continuous-time agent dynamics from
the discrete-time network decision dynamics. The reduced-order
models are characterized as follows:

Decision System. Define the equilibrium trajectory of the iso-
lated continuous-time agent dynamics as a known function
h : Dx �Rþ ! Dy, which satisfies _h p; tð Þ ¼ g p; h p; tð Þ; t; 0ð Þ for
p � Dx and t � Rþ. The decision system is then defined as

�x tþk
� �

¼ f �x t�kð Þ; h �x t�kð Þ; tkð Þ; k; 0
� �

(2)

subject to �x t0ð Þ ¼ x0 0ð Þ.
Interval Correction System. Define the kth time interval

between discrete-time updates as I k¢ t 2 R j tk � t < tkþ1f g and

the elapsed time within this interval as g¢t� tk. The interval cor-
rection system is then defined separately for each interval I k as

_̂y k gð Þ ¼ g �x tþk
� �

; ŷk gð Þ þ h �x tþk
� �

; gþ tk

� �
; gþ tk; 0

� �
�
@h �x tþk

� �
; gþ tk

� �
@t

(3)

subject to ŷ0 0ð Þ ¼ y0 0ð Þ � h �x t0ð Þ; t0ð Þ for the first interval and

ŷk 0ð Þ ¼ h �x t�kð Þ; tkð Þ � h �x tþk
� �

; tk
� �

otherwise, and where �x is the

state vector of the decision system defined in Eq. (2).

Remark 1. The decision system (2) describes the reduced-order
behavior of the isolated discrete-time network dynamics with the
continuous-time agent dynamics always at their state-dependent
equilibrium. Note that the system is purely discrete.

Remark 2. The interval correction system (3) describes the evo-
lution of the isolated continuous agent dynamics toward the equi-
librium trajectory between each set of consecutive discrete
updates. The initial conditions are based on the state vector �x of
the decision system alone. They are independent of the state
of the interval correction system on any previous intervals. Note
that the interval correction system describes purely continuous-
time dynamics. The new time variable g is introduced here to
make clear that solutions of Eq. (3) are dependent on the elapsed
time and are defined only for a particular interval I k.

Remark 3. The last argument of the vector fields f and g is set to
zero in Eqs. (2) and (3) because the reduced-order models
describe the dynamics in the limit of s growing very large so that
the discrete network updates always occur with the agents at their
state-dependent equilibrium.

Remark 4. While the original dynamics (1) are fully coupled,
the reduced-order models (2) and (3) obtain their triangular struc-
ture by exploiting the equilibrium trajectory h �x; tð Þ.

With the reduced-order models defined in Eqs. (2) and (3), the
next logical question is under what conditions these models pro-
vide an accurate description of the original coupled dynamics (1).
To this end, the following lemma first provides conditions to
ensure that the approximation provided by the reduced-order
continuous-time interval dynamics remains close to the true
continuous-time dynamics over the time interval I k, given that
the initial conditions of Eq. (3) and the state vector �x of the deci-
sion system (2) are both close to the true values of Eq. (1) at the
start of the interval.

LEMMA 1. For the dynamics (1) under Assumptions 1 and 2, fur-
ther assume that the interval correction system (3) is uniformly
asymptotically stable for all points �x 2 Dx and the corresponding
known trajectories h �x tþk

� �
; t

� �
. Then, if y tkð Þ � ŷk 0ð Þ � h �x tþk

� �
;

�
tkÞ ¼ o 1ð Þ and x tþk

� �
� �x tþk
� �

¼ o 1ð Þ in the limit s!1, s can be
chosen large enough that

y tð Þ � ŷk t� tkð Þ � h �x tþk
� �

; t
� �

¼ o 1ð Þ

for all t in the time interval I k ¼ t 2 R j tk � t < tkþ1f g. Further,
there is a tj with tk< tj� tkþ1 such that

y tð Þ � h �x tþk
� �

; t
� �

¼ o 1ð Þ

holds for all t � [tj, tkþ1).
Proof. The proof of the lemma follows three steps:

(1) Formulate the dynamics of the continuous-state approxima-
tion error over an interval as a perturbed version of the
interval correction dynamics.

(2) Use the stability of the interval correction system and a
converse Lyapunov theorem to obtain a Lyapunov function
with certain desirable bounding properties for the interval
correction dynamics.

(3) Use the interval correction dynamics’ Lyapunov function
as well as the form of the perturbation in dynamics of the
continuous-state approximation error to obtain bounds on
the norm of this approximation error.

The steps are detailed as follows:
Step 1. In the following, all instances of x tþk

� �
will be written as

x and all instances of �x tþk
� �

as �x for conciseness since both x tþk
� �

and �x tþk
� �

are constant over the interval I k where the analysis is

performed.
Define the error in the approximation over the interval I k as

v gð Þ¢y gþ tkð Þ � h �x; gþ tkð Þ � ŷk gð Þ. The error dynamics within
the interval are then written as
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dv

dg
¼ d

dg
y gþ tkð Þ � h �x; gþ tkð Þ � ŷk gð Þ
� �

¼ _y gþ tkð Þ �
@h �x; gþ tkð Þ

@t
� _̂y k gð Þ

Now, with _y defined in Eq. (1) and _̂yk defined in Eq. (3), the error
dynamics are

dv

dg
¼ g x; y gþ tkð Þ; gþ tk; lð Þ �

@h �x; gþ tkð Þ
@t

� g �x; ŷk gð Þ þ h �x; gþ tkð Þ; gþ tk; 0
� �

� @h �x; gþ tkð Þ
@t

� 	
¼ g x; y; gþ tk; lð Þ � g �x; ŷk þ h �x; gþ tkð Þ; gþ tk; 0

� �
þ g �x; y; gþ tk; lð Þ � g �x; y; gþ tk; lð Þ

 �
þ g �x; y; gþ tk; 0ð Þ � g �x; y; gþ tk; 0ð Þ

 �
þ g �x; vþ h �x; gþ tkð Þ; gþ tk; 0ð Þ


�g �x; vþ h �x; gþ tkð Þ; gþ tk; 0ð Þ

�
þ g �x; h �x; gþ tkð Þ; gþ tk; 0ð Þ �

@h �x; gþ tkð Þ
@t

� 	

¼ g �x; vþ h �x; gþ tkð Þ; gþ tk; 0ð Þ �
@h �x; gþ tkð Þ

@t

þfg �x; vþ ŷk þ h �x; gþ tkð Þ; gþ tk; 0
� �

�g �x; vþ h �x; gþ tkð Þ; gþ tk; 0ð Þ

�g �x; ŷk þ h �x; gþ tkð Þ; gþ tk; 0
� �

þg �x; h �x; gþ tkð Þ; gþ tk; 0ð Þg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D1

þ g �x; y; gþ tk; lð Þ � g �x; y; gþ tk; 0ð Þ

 �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D2

þ g x; y; gþ tk; lð Þ � g �x; y; gþ tk; lð Þ

 �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D3

using y gþ tkð Þ ¼ v gð Þ þ h �x; gþ tkð Þ þ ŷk gð Þ by definition of the

approximation error, and g p; h p; gþ tkð Þ; gþ tk; 0ð Þ � @h p; gð
þtkÞ=@t ¼ 0 for p � Dx by definition of the equilibrium trajectory.
That is, the error dynamics may be written as

dv

dg
¼ g �x; vþ h �x; gþ tkð Þ; gþ tk; 0ð Þ �

@h �x; gþ tkð Þ
@t

þ DG (4)

a perturbed version of the interval correction dynamics (3), where
the perturbation is DG¼D1þD2þD3. Now, the first component
of the perturbation satisfies

kD1k ¼ kg �x; vþ ŷk þ h �x; gþ tkð Þ; gþ tk; 0
� �

�g �x; vþ h �x; gþ tkð Þ; gþ tk; 0ð Þ
�g �x; ŷk þ h �x; gþ tkð Þ; gþ tk; 0
� �

þg �x; h �x; gþ tkð Þ; gþ tk; 0ð Þk

¼
ð ŷkþh �x ;gþtkð Þ

h �x ;gþtkð Þ

@g �x; sþ v; g; 0ð Þ
@y

� @g �x; s; g; 0ð Þ
@y

 �
ds

�����
�����

�
ð ŷkþh �x;gþtkð Þ

h �x;gþtkð Þ
Mkvkds

�����
�����

� Mkvkkŷkk

over the domain for some M� 0 since g is continuously differen-
tiable. The second component has the bound

kD2k ¼ kg �x; y; gþ tk; lð Þ � g �x; y; gþ tk; 0ð Þk � lL4

over the domain for some L4� 0 since g is Lipschitz in its last
argument. The third component is then similarly bounded by

kD3k ¼ kg x; y; gþ tk; lð Þ � g �x; y; gþ tk; lð Þk � L1kx� �xk

over the domain for some L1� 0 since g is Lipschitz in its first
argument. Therefore, the overall perturbation bounds

kDGk � Mkŷkk
� �

kvk þ L1kx� �xk þ lL4f g (5)

hold over the domain.
Step 2. By assumption, the interval correction system (3) is uni-

formly asymptotically stable for each �x 2 Dx. Therefore, by the
converse Lyapunov theorem [7, Theorem 4.16], there exists a Lya-
punov function V over some domain DV ¼ v 2 Rn j kvk2 < r


 �
for the dynamics that satisfies the inequalities a1 kvkð Þ �
V g; vð Þ � a2 kvkð Þ

@V

@g
þ @V

@v
g �x; vþ h �x; gþ tkð Þ; gþ tk; 0ð Þ �

@h �x; gþ tkð Þ
@t

� 	
� �a3 kvkð Þ

and k@V=@vk � a4 kvkð Þ for class K functions ai defined on [0, r].
Step 3. In Eq. (5), the perturbation DG in the error dynamics (4)

has been shown to satisfy

kDGk � c gð Þkvk þ d

with c gð Þ ¼ Mkŷkk
� �

kvk and d ¼ L1kx� �xk þ lL4. Due to the
asymptotic stability of the interval correction dynamics

kŷkk � b1 kŷk 0ð Þk; g
� �

; 8 0 � g < tkþ1 � tk (6)

for some class KL function b1. Now, c gð Þ ¼ Mb1 kŷk 0ð Þk; g
� �

and

d are both non-negative, continuous, and bounded for all

0� g� tkþ1 – tk. Since kx� �xk ¼ o 1ð Þ and kv 0ð Þk ¼ o 1ð Þ, l can
be chosen, dependent on r (the same r that defines DV) and for
0� g� tkþ1 – tk, small enough that

c gð Þkvk þ d ¼ Mb1 kŷk 0ð Þk; g
� �

kvk
þL1kx� �xk þ lL4

� d < ha3 a�1
2 a1 rð Þð Þ

� �
=a4 rð Þ

with kvk < r; d 2 Rþ, and 0< h< 1. Therefore, by Ref. [7,
Lemma 9.3], for all kv 0ð Þk < a�1

2 a1 rð Þð Þ, trajectories of the
approximation error system (4) satisfy

kv gð Þk � b2 kv 0ð Þk; g
� �

; 8 0 � g < �g

and

kv gð Þk � a5 dð Þ; 8 �g � g � tkþ1 � tk

for some class KL function b2, some finite �g, and a5 the class j
function defined by

a5 dð Þ ¼ a�1
1 a2 a�1

3

da4 rð Þ
h

 � � �

This gives the bound on y tð Þ � h �x; tð Þ � ŷk t� tkð Þ for all
tk� t< tkþ1. Since Eq. (6) gives an asymptotically decaying
bound on kŷkk, s can be chosen large enough that there exists a tj
with tk< tj� tkþ1 such that kŷk t� tkð Þk ¼ o 1ð Þ for t� tj and thus

y tð Þ � h �x; tð Þ ¼ o 1ð Þ holds for all t � [tj, tkþ1). w
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In Lemma 1, the Landau “little-Oh” o(1) bounds on the approx-
imation error of the continuous agent state over an interval can be
interpreted as saying that this error decreases asymptotically as s
grows large even though the reduced-order model is not quite the
same as the full model and the approximation starts from different
initial conditions than the true dynamics. This is a result of the
assumption of uniform asymptotic stability for Eq. (3), which
allows the continuous dynamics to eventually evolve to a known
trajectory when �x is known. As described by the following lemma,
tighter bounds on this approximation error can be found under the
more restrictive assumption of exponential stability for Eq. (3).

LEMMA 2. Under the conditions of Lemma 1, if instead the

errors in initial conditions are O s�1ð Þ and the interval correction
system (3) is exponentially stable for all points �x 2 Dx and their
corresponding known trajectories h �x tþk

� �
; t

� �
, then the o(1)

bounds on the approximation in Lemma 1 are replaced by O s�1ð Þ
bounds.

Proof. The proof adopts the same three-step structure as the
proof of Lemma 1, with the following changes:

Step 1. Follows identically.
Step 2. By Ref. [7, Theorem 4.14], the conditions on the con-

verse Lyapunov function V are satisfied with ai kvkð Þ ¼ cikvk2
for

i¼ 1, 2, 3 and a4 kvkð Þ ¼ c4kvk for positive constants c1–c4.
Step 3. Since exponential stability holds, then the bound on

kŷkk in Eq. (6) is of the form b1 kŷk 0ð Þk; g
� �

¼ kkŷk 0ð Þke�ag. Fur-

ther,
Ð g

0
c sð Þds � 0 � gþ x for some non-negative constant x.

Define a ¼ 1=2c3=c2 > 0 and p ¼ exp c4x=2c1ð Þ � 1, where the
ci comes from the bounds converse Lyapunov function V, and

choose s large enough that v 0ð Þ ¼ y tkð Þ � ŷk 0ð Þ � h �x tþk
� �

; tk
� �

¼
O s�1ð Þ satisfies kv 0ð Þk < r=p=

ffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p
and small enough that

d < 2c1ar=c4p. By Ref. [7, Lemma 9.4], trajectories of the
approximation error system (4) therefore satisfy the norm bound

kv gð Þk �
ffiffiffiffiffi
c2

c1

r
pkv 0ð Þke�ag þ c4p

2c1

d

ðg

0

e�a g�sð Þds

whose first term is of O s�1ð Þ for all g� 0 if kv 0ð Þk ¼ O s�1ð Þ,
and whose second term is of O s�1ð Þ because d is and since the
integral is bounded for all g� 0. This gives the bound on y�
h �x; tð Þ � ŷk t� tkð Þ for all tk� t< tkþ1. Since kŷkk has an exponen-
tially decaying bound in g, s can be chosen large enough that there

exists a tj with tk< tj� tkþ1 such that kŷk t� tkð Þk ¼ O s�1ð Þ,
giving the desired bound on y tð Þ � h �x; tð Þ. w

Under the more stringent condition of exponential stability for
the interval correction system (3), the corresponding Landau “big-
Oh” O s�1ð Þ bounds in Lemma 2 give a stricter statement of the
rate of the approximation error’s decrease as s grows large. This
is possible because exponential stability gives concrete time
bounds for the evolution of y toward h �x; tð Þ in step 3 of the
lemma.

With Lemmas 1 and 2 in place, the validity of approximating
the coupled hybrid-time system (1) by dynamics of the reduced-
order models (2) and (3) can now be determined.

THEOREM 1. For the dynamics (1) under Assumptions 1 and 2,
further assume that the interval correction system (3) is uniformly
asymptotically stable for all points �x 2 Dx and the corresponding
known trajectories h �x tþk

� �
; t

� �
. Then, for the reduced-order mod-

els �x and ŷ, respectively, characterized in Eqs. (2) and (3), and
any tf� t0, there exists a s0, 0< s0<1, such that for all s� s0

the approximations

x tþk
� �

¼ �x tþk
� �
þ o 1ð Þ

y tð Þ ¼ h �x tþk
� �

; t
� �

þ ŷk t� tkð Þ þ o 1ð Þ

are valid for all t � [t0, tf]. Further, for each interval I k between
discrete updates with tk< tf, there is a tj with tk< tj� tkþ1 such
that the approximation

y ¼ h �x tþk
� �

; t
� �

þ o 1ð Þ

holds for all t � [tj, tkþ1).
Proof. The proof uses induction to follow the error in the

approximation for x over discrete updates, with the error in the y
approximation bounded over the continuous-time intervals using
Lemma (1).

Define u tþk ; l
� �

¼ x tþk ; l
� �

� �x tþk
� �

. Suppose for some k
that kx t�kð Þ � �x t�kð Þk ¼ o 1ð Þ and ky tk � sð Þ � h �x t�kð Þ; tk � sð Þk
¼ o 1ð Þ. Then, under the assumption of uniform asymptotic stabil-
ity of Eq. (3), s can be always be chosen large enough that

ky tkð Þ � h �x t�kð Þ; t�kð Þk ¼ o 1ð Þ by Lemma 1. Further, after the

transition

ku tþk ;l
� �

k¼kf x t�kð Þ;y tkð Þ;k;l
� �

� f �x t�kð Þ;h �x t�kð Þ; tkð Þ;k;0
� �

k
�P1kx t�kð Þ� �x t�kð ÞkþP2ky tkð Þ�h �x t�kð Þ; tkð ÞkþP4l

¼ oð1Þ

using the Lipschitz property of f so that kx tþk
� �
� �x tþk
� �
k ¼ o 1ð Þ.

From the initial conditions and the assumption that x0 and y0

are O 1ð Þ and Lipschitz, kx t�1ð Þ � �x t�1ð Þk ¼ kx tþ0
� �
� �x tþ0
� �
k ¼

kx0 lð Þ �x0 0ð Þk ¼ O lð Þ and ky t0ð Þ � ŷ0 0ð Þ �h �x tþ0
� �

; t0

� �
k ¼

ky0 lð Þ �y0 0ð Þk ¼ O lð Þ, and are thus both o(1). Therefore, s can

be chosen large enough that the approximations

x tþk
� �

¼ �x tþk
� �
þ o 1ð Þ

y tð Þ ¼ h �x tþk
� �

; t
� �

þ ŷ t� tkð Þ þ o 1ð Þ

hold by induction for any finite number of discrete updates, and
thus are valid for all t � [t0, tf]. The bound on y for t � [tj, tkþ1)
then comes from application of Lemma 1. w

Again, stricter bounds on the approximation errors may be
found by assuming exponential stability of the interval correction
system.

COROLLARY 1. Under the conditions of Theorem 1, if the interval
correction system (3) is instead exponentially stable for all points
�x 2 Dx and their corresponding known trajectories h �x tþk

� �
; t

� �
,

then the o(1) bounds on the approximation in Theorem 1 are

replaced by O s�1ð Þ bounds.
Proof. The desired results follow identically to the proof of

Theorem 1 by noting that (1) both kx0 lð Þ � x0 0ð Þk ¼ O s�1ð Þ and

ky0 lð Þ � y0 0ð Þk ¼ O s�1ð Þ hold since x0 and y0 are Lipschitz, (2)

the continuous-interval bounds given by Lemma 2 may be used
instead of the bounds given by Lemma 1 since the stricter require-
ment of Eq. (3) being exponentially stable is met here. w

Theorem 1 provides a certificate that Eqs. (2) and (3) are good
approximations of Eq. (1) as s grows large, with the trajectories of
the reduced-order approximations remaining asymptotically close
to the trajectories of the full system. Intuitively, the error bounds
grow smaller as the update period grows because the continuous-
time agent dynamics have more time to reach their equilibrium
trajectory, making the reduced-order models more accurate. Cor-
ollary 1 then provides stricter bounds on the approximation error
by assuming exponential stability instead of asymptotic stability,
as in Lemma 2. These results give mathematical rigor to the
notion of a separation principle between the continuous-time and
discrete-time dynamics, as desired.

4 Stability Bounds on Communication Rate

For the purpose of implementation, quantitative bounds on s
are desirable that guarantee stability of the hybrid-time system
(1). If the reduced-order discrete-time decision system (2) is
designed assuming that the continuous-time dynamics are always
at their state-dependent equilibrium, then too-frequent updates
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may lead to instability of the coupled dynamics (1). This is
because at the time of the next update, the continuous-time states
would not have had a chance to reach their new equilibrium and
may in fact have initially moved away from this equilibrium due
to nonminimum phase behavior [6, Chap. 6]. This section there-
fore details an approach to find sufficient lower bounds on s above
which the hybrid-time system is guaranteed to be stable under
given conditions and using the stability properties of the individ-
ual reduced-order models.

To begin, define the trajectory tracking error ~y as the difference
between the continuous agent state vector and its state-dependent

equilibrium trajectory, ~y tð Þ ¼ y tð Þ � h x tþk
� �

; t
� �

. After a discrete

jump, the equilibrium trajectory changes due to the updated value
of the discrete network state vector, and ~y is thus correspondingly
updated as

~y tþk
� �

¼ y tkð Þ � h x tþk
� �

; tk
� �

¼ ~y t�kð Þ þ h x t�kð Þ; tkð Þ

 �

� h x tþk
� �

; tk

� �
¼ ~y t�kð Þ þ h x t�kð Þ; tkð Þ
�h f x t�kð Þ; ~y t�kð Þ þ h x t�kð Þ; tkð Þ; tk; l

� �
; tk

� �
The hybrid-time system (1) can therefore be rewritten in terms of
~y as

x tþk
� �

¼ f ðx t�kð Þ; ~y t�kð Þ þ h x t�kð Þ; tk; lð Þ
~y tþk
� �

¼ ~y t�kð Þ þ h x t�kð Þ; tkð Þ
�h f x t�kð Þ; ~y t�kð Þ þ h x t�kð Þ; tkð Þ; tk; l

� �
; tk

� �
_~y tð Þ ¼ g x tþk

� �
; ~y tð Þ þ h x tþk

� �
; t

� �
; t; l

� �
�
@h x tþk

� �
; t

� �
@t

(7)

subject to ~y t0ð Þ ¼ y t0ð Þ � h x t0ð Þ; t0ð Þ and valid for all time t� t0.
This collection of states will be denoted in the following by

z¢ xT; ~yT
� �T

.
In order to derive explicit numerical conditions that guarantee

stability of Eq. (7), it will be further assumed that
ASSUMPTION 3. The vector field f can be written as

f x; ~y þ h x; tð Þ; tk; l
� �

¼ Kxþ ~f x; ~y; tk; lð Þ, where K 2 Rnx�nx and
~f is bounded over Dx and Dy as

k~f k2 � zT
J11 J12

JT
12 J13

" #
zþ lzT

E11 E12

ET
12 E13

" #
z

¢zTJ1zþ lzTE1z

with J11; E11 2 Rnx�nx ; J12; E12 2 Rnx�ny , and J13; E13 2 Rny�ny

ASSUMPTION 4. The vector field g can be written as
g x; ~y þ h x; tð Þ; t; l
� �

� @h x; tð Þ=@t ¼ A~y þ ~g x; ~y; t; lð Þ, where A 2
Rny�ny and ~g is bounded over Dx and Dy as

k~g x; ~y; t;lð Þk2 � ~yTR~y þ lzT E21 E22

ET
22 E23

� �
z¢~yTR~y þ lzTE2z

with E21 2 Rnx�nx ; E22 2 Rnx�ny , and R; E23 2 Rny�ny

ASSUMPTION 5. The jump in the ~y states after a discrete update,
Dh¢h x t�kð Þ; tkð Þ � h f x t�kð Þ; ~y t�kð Þ þ h x t�kð Þ; tð Þ; k; l

� �
; tk

� �
, is

bounded over Dx and Dy as

kDhk2 � zT J21 J22

JT
22 J23

� �
z¢zTJ2z

with J21 2 Rnx�nx ; J22 2 Rnx�ny , and J23 2 Rny�ny .
Assumption 3 implies that the discrete x dynamics have a zero

equilibrium when ~y ¼ 0 and l¼ 0. This is reasonable as equilib-
rium of interest can be relocated to zero by a simple coordinate
shift [7]. Assumption 4 allows ~y to have a stable zero equilibrium
when l¼ 0, while Assumption 5 provides state-dependent bounds

on the change in the continuous agent dynamics’ state-dependent
equilibrium trajectory due to a discrete update. Nonlinearities of
these types are standard in the interconnected systems literature
and cover a wide class of practical systems including the attitude
dynamics of precision-pointing spacecraft [15, Chap. 6] and mul-
timachine power systems [16,17].

With these assumptions in place, the following theorem now
gives sufficient conditions under which the error dynamics (7) are
stable about the origin. The approach uses the well-known theory
of vector Lyapunov functions [18, Chap. 2], which allows stability
properties of the isolated subsystems to be leveraged in the analy-
sis by loosening the restrictions on scalar Lyapunov functions for
hybrid systems [19].

THEOREM 2. For the dynamics (7) under Assumptions 3–5, if for
some s? ¼ 1=l? there are matrices P1, P2> 0 and positive scalars
dij, b, ci, ji such that the linear matrix inequalities (LMIs)

U � 0; X � 0; W � 0

hold with

U¢

�d11P1þKTP1K

þc1J11þc1l
?E11

 !
c1J12þc1l

?E12 KTP1

� c1J13þc1l
?E13�d12P2 0

� � �c1þP1

2
66664

3
77775

X¢

�j1P1þl?bE21 l?bE22 0

� j2P2þP2AþATP2

þbRþl?bE23

 !
P2

� � �bI

2
66664

3
77775

and

W¢

�d21P1 þ c2J21 c2J22 0

� �d22P2 þ P2 þ c2J23 P2

� � �c2I þ P2

2
4

3
5

and such that

q
d11 þ

d12j1

j2

1� e�j2s?ð Þ d12e�j2s?

d21 þ
d22j1

j2

1� e�j2s?ð Þ d22e�j2s?

2
664

3
775

0
BB@

1
CCA � 1

where q(�) denotes the spectral radius of a matrix; then the error
dynamics (7) are stable about zero for all s� s?.

Proof. The proof follows by construction of a vector Lyapunov
function and analysis of the corresponding comparison system. To
begin, assume the vector Lyapunov function U tð Þ ¼ V1 tð Þ;½
V2 tð Þ	T (see Ref. [18, Chap. 2], for example) with V1 ¼ xTP1x
and V2 ¼ ~yTP2~y and Pi> 0. Further assume that the LMIs are sat-
isfied for some l?LMI. Since l comes into the LMIs through a posi-
tive semidefinite matrix, the LMIs are also satisfied for all
l � l?LMI, or equivalently all s � 1=l?LMI ¼ s?LMI.

For V1, calculating the derivative for t 2 I k yields

_V1 ¼ 2xTP1 _x ¼ 0

since x only changes at the discrete jumps. Over jumps
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V1 tþk
� �

¼ f x; ~y þ h; k; lð ÞTP1f x; ~y þ h; k; lð Þ

¼ Kxþ ~f
� �T

P1 Kxþ ~f
� �

¼
x

~f

" #T

K I
� �T

P1 K I
� � x

~f

" #

�
x

~f

" #T

K I
� �T

P1 K I
� � x

~f

" #

þc1 zTJ1zþ lzTE1z� k~f k2
� �

where c1� 0, since 0 � c1 zTJ1zþ lzTE1z� k~f k2
� �

. Adding and
subtracting d11V1 and d12V2, where each d1j� 0, this can be fur-
ther arranged as

V1 tþk
� �

� z
~f

� �T

U
z
~f

� �
þ d11V1 þ d12V2

Since U� 0, the inequality V1 tþk
� �

� d11V1 t�kð Þ þ d12V2 t�kð Þ
therefore holds.

For V2, the derivative along trajectories for t 2 I k satisfy

_V 2 ¼ 2~yTP2
_~y

� 2~yTP2 A~y þ ~g x; ~y; t; lð Þð Þ
þb ~yTR~y þ lzTE2z� k~gk2
� �

þ j1V1 � j2V2ð Þ � j1V1 � j2V2ð Þ

This can be rearranged as

_V 2 �
z
~g

� �T

X
z
~g

� �
þ j1V1 � j2V2

and therefore _V2 � j1V1 � j2V2 holds since X� 0. Over jumps,
similarly to the V1 tþk

� �
case

V2 tþk
� �

¼ ~y þ Dhf gTP2 ~y þ Dhf g

¼
~y

Dh

" #T

I I
� �T

P2 I I
� � ~y

Dh

" #

�
~y

Dh

" #T

I I
� �T

P2 I I
� � ~y

Dh

" #
þ c2 zTJ2z� kDhk2

� �

¼
z

Dh

" #T

W
z

Dh

" #
þ d21V1 þ d22V2

Thus, V2 tþk
� �

� d21V1 t�kð Þ þ d22V2 t�kð Þ holds since W� 0.
The vector Lyapunov function U(t) has been shown to satisfy

_U� 0 0

j1 �j2

h i
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

B

U

and

U tþk
� �

� d11 d12

d21 d22

h i
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

D

U t�kð Þ

where v � u implies vi� ui for all i. A comparison system for the
dynamics is therefore

u tþk
� �

¼ Du t�kð Þ
_u ¼ Bu

(8)

subject to u(t0)¼U(t0). It follows from Ref. [18, Theorem 2.11]
that the stability properties of the zero solution of Eq. (8) imply
the corresponding stability properties of the error dynamics (7).

To analyze stability of Eq. (8), construct the state evolution of u
at t 2 I k as

u tð Þ ¼ eB t�tkð Þ
Yk

i¼1

DeB ti�ti�1ð Þu t0ð Þ

¼ eB t�tkð Þ
Yk

i¼1

~D ti � ti�1ð Þu t0ð Þ

where ~D is explicitly calculated as

~D ti � ti�1ð Þ ¼
d11 þ

d12j1

j2

1� e�j2 ti�ti�1ð Þð Þ d12e�j2 ti�ti�1ð Þ

d21 þ
d22j1

j2

1� e�j2 ti�ti�1ð Þð Þ d22e�j2 ti�ti�1ð Þ

2
664

3
775

Now, ku tð Þk is bounded if each ~D has spectral radius of at most
one. Noting that as s!1

lim
s!1

k ~D sð Þ
� �

¼ d11 þ
d12j1

j2

; 0

the condition is feasible if d11þ d12(j1/j2)� 1. Therefore, choos-

ing s? � s?LMI such that maxjk ~D s?ð Þ
� �

j � 1, and noting that

maxjk ~D sð Þ
� �

j is monotonic in s, the original system (1) is stable
for all s � s?. �

Fig. 2 Distributed attitude consensus for a network of satel-
lites with intermittent communication: (a) the set of reference
attitudes updates distributively at time tk over a barbell graph
and (b) each satellite’s attitude evolves toward its reference atti-
tude between discrete updates
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The results of Theorem 2 yield stability bounds for the hybrid-
time system. The matrices in the LMIs are slack matrices that
allow a simpler comparison system to be analyzed in the proof
instead of the original dynamics. This comparison system is based
on Lyapunov functions for the individual continuous-time and
discrete-time dynamics. Of course, the acquired bounds may be
conservative since they are based on particular Lyapunov func-
tions. However, the outlined approach can be adapted if more
information, such as more appropriate Lyapunov functions, are
known for the reduced-order models.

5 Application

This section presents an application of the paper’s main results
to the analysis of a distributed network of satellites. Using the
approach detailed in Sec. 3, reduced-order models are derived that
decouple the satellites’ discrete-time leader–follower consensus
protocol from their individual continuous-time attitude tracking
dynamics when the update rate is slow. A bound on the update
rate is then found that guarantees stability for the coupled hybrid-

time system using the method of Sec. 4, and it is shown how
update rates faster than this bound can cause instability.

Consider a group of satellites communicating intermittently
over a network to distributively reach consensus on their attitude
as illustrated in Fig. 2, where the ith satellite’s attitude is repre-
sented by the modified Rodrigues parameters (MRPs) ri 2 R3.
Further assume that one satellite, the leader, has knowledge of the
desired attitude rdesired for the group. A distributed protocol for
the ith satellite’s reference attitude is then provided by the discrete
leader–follower dynamics

rref;i tþk
� �

¼ rdesired; i ¼ 1

ri t�kð Þ þ D
P

j2N ið Þ ri t�kð Þ � rj t�kð Þð Þ; i 6¼ 1

�

where D is a (fixed) step size, and j 2 N ið Þ if there is an edge
from agent j to agent i in the satellites’ undirected communication
graph, G [20]. Under appropriate closed-loop control [21, Chap.
8], the ith satellite’s attitude error kinematics are described by

d

dt

r̂i

_ri

� �
¼ 0 I3

�ci;1I3 �ci;2I3

� �
r̂i

_ri

� �
þ 0

~gi r̂ i; _ri; tð Þ

� �

where r̂ i ¼ ri � rref;i, and where ~gi accounts for the nonlinear
effects of imperfect actuation in the control. This is a tracking

controller that stabilizes to hi x; tð Þ ¼ rT
ref;i; 01�3

h iT

when rref,i is

fixed.
The discrete evolution of the satellites’ reference attitudes,

x ¼ rT
ref;1 � � �rT

ref;n

h iT

, and continuous evolution of their true

states, y ¼ rT
1 ;…; rT

n ; _rT
1 ;…; _rT

n

� �T
, can be equivalently written

as the coupled system

x tþk
� �

¼ K 03n�3n½ 	y tkð Þ þ
rdesired

03 n�1ð Þ�1

" #

_y tð Þ ¼ A y tð Þ � x tþk
� �

03n�1

" # !
þ ~g x tþk

� �
; y tð Þ; t

� �
(9)

where

K¢
01�n

In � DL Gð Þ½ 	2:n;1:n

" #

 I3

A¢
03n�3n I3n

�Inc1 
 I3 �Inc2 
 I3

" #
; and ~g x; y; tð Þ¢

0

~g1 r̂1; _r1; tð Þ
�

~gn r̂n; _rn; tð Þ

2
66664

3
77775

Fig. 3 Comparison of reduced-order models and true evolu-
tion of one satellite’s state as s increases: (a) continuous evolu-
tion of the first MRP within a normalized interval and (b)
discrete evolution of the first MRP reference commands

Table 1 Simulation parameters

Parameter Value

c1 0.4� 1
c2 1

D 0.4
G Barbell graph on 8 nodes

Table 2 Values of constants that satisfy Theorem 2

Parameter Value

P1 I

P2 Solution to P2AþAP2þ I¼ 0

d11 0.9750

d12 28.5469

d21 16.1391

d22 10.0091

B 310.9920

c1 43.5036

c2 3.7445

j1 4.0752� 10�9

j2 0.3016

s? 33 s
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Here, 
 represents the Kronecker product, cj ¼ cj;1 � � � cj;n½ 	T;
In � L Gð Þ½ 	2:n;1:n are the last n–1 rows of the matrix difference, and

L Gð Þ is the satellite communication network’s graph Laplacian
L Gð Þ. The dynamics (9) are of the form Eq. (1) and they satisfy
the conditions of Theorem 1. Therefore, as shown in Fig. 3, the
corresponding reduced-order models

�x tþk
� �

¼ K 03n�3n½ 	�x t�kð Þ þ
rdesired

03 n�1ð Þ�1

� �

and

_̂yk gð Þ ¼ Aŷk gð Þ þ ~g �x tþk
� �

; ŷk gð Þ þ �x tþk
� �

; gþ tk
� �

given by Eqs. (2) and (3), respectively, become good approxima-
tions of the true dynamics as the minimum time s between dis-
crete updates increases. Here, the reduced-order decision
dynamics for �x describe discrete-time leader–follower dynamics
whose behavior is linked to the communication graph’s topology.

To find a bound on s that guarantees stability, first rewrite the
dynamics (9) in terms of the error states ~x ¼ x� 1
 rdesired and

~y ¼ y� ~x þ 1
 rdesiredð ÞT; 0
h iT

. Using L Gð Þ1 ¼ 0 (see Ref. [20],

for example), the error dynamics are then

~x tþk
� �

¼ K~x t�kð Þ þ K 0½ 	~y t�kð Þ

~y tþk
� �

¼ ~y t�kð Þ þ
I � Kð Þ~x t�kð Þ � K 0½ 	~y t�kð Þ

0

" #
_~y tð Þ ¼ A~y tð Þ þ ~g ~x tþk

� �
þ 1
 rdesired~y tð Þ

�
þ~g M~y tð Þ þ ~x tþk

� �
þ 1
 rdesired

0

" #
; t

 !
(10)

which is of the form Eq. (7). Now, for the satellite and network
parameters defined in Table 1, Assumptions 1 and 3 of Theorem 2
are satisfied with

J1 ¼
0 0 0

0 KTK 0

0 0 0

2
4

3
5; E1 ¼ 0

and

J2 ¼
I3n � Kð ÞT I3n � Kð Þ � I3n � Kð ÞTK 0

�KT I3n � Kð Þ KTK 0

0 0 0

2
64

3
75

while Assumption 2 holds by assuming that R � 0:01ð Þ2 
 I.
The LMIs and spectral radius inequality in Theorem 2 are then
satisfied using the constants defined in Table 2, providing the
bound s? ¼ 33 s. As expected, Fig. 4(a) shows that the hybrid-
time system is stable when s¼ 33 s. However, the bound given
by any particular combination of parameters that satisfy Theo-
rem 2 may be conservative. For these particular initial condi-
tions, Fig. 4(b) demonstrates that the satellites exhibit unstable
oscillations in their attitudes when s¼ 10 s. In this particular
case, the instability is due to a resonance phenomenon where
the distributed decisions on new reference attitudes are made
when satellites have overshot their previous reference attitudes.
For large enough s, however, the satellites’ attitudes settle
closer to their individual references, which allows the discrete
leader–follower consensus protocol to evolve in a stable fashion
as designed. This example illustrates the potential danger of
too-frequent communication updates even for systems where
the discrete network dynamics and continuous agent dynamics
are stable when isolated.

6 Conclusion

This paper examined the interactions between continuous-
time and discrete-time dynamics often found in networked sys-
tems. First, a separation principle between the continuous-time
agent dynamics and the discrete-time network dynamics was
proven as the period between updates of the discrete system
grows. Different asymptotic error bounds for the resulting
reduced-order models were found based on the stability proper-
ties of the isolated continuous-time agent dynamics. Intuitively,
these bounds grow tighter for a slower communication rate
because the continuous-time system can evolve closer to its
state-dependent equilibrium, yielding a more accurate trajectory
in the reduced-order models. In the context of networked dynam-
ical systems, this separation principle rigorously justifies the iso-
lated design of discrete-time network dynamics and continuous-
time agent dynamics. Next, a method was described for estab-
lishing quantitative upper bounds on the update rate below which
the coupled hybrid-time system is guaranteed to be stable. The
approach uses separate Lyapunov functions for the continuous-

Fig. 4 Evolution of all 8 satellites’ attitudes, showing instabil-
ity for small s: (a) s 5 33 s 5 s? and (b) s 5 10 s < s?
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time agent dynamics and the discrete-time network dynamics to
form a simpler comparison system that establishes stability of
the coupled hybrid-time system when the bound is satisfied.
When updates occur faster than this bound, however, the system
can become unstable even if the decoupled network and agent
dynamics are individually stable. This is because the agents no
longer have adequate time to approach their reference trajecto-
ries before the next update, and may in fact initially diverge
from their reference trajectories due to non-minimum phase
behavior. An application where satellites intermittently commu-
nicate over a network to establish consensus on their attitudes
illustrated these results.
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Nomenclature

Times and Rates

tk ¼ time at the kth update of the discrete-time system, s
tþk ¼ time immediately following the kth update of the

discrete-time system, s
t�k ¼ time immediately preceding the kth update of the

discrete-time system, s
t0 ¼ initial time, s
l ¼ fastest update rate of the discrete-time system, 1/s, Hz

l? ¼ sufficient upper bound on the update rate to guarantee
stability of the coupled system, 1=s?, Hz

s ¼ lower-bound on time between updates of the discrete-
time system, s

s? ¼ sufficient lower-bound on s to guarantee stability of the
coupled system, s

Full Model Symbols

Dx ¼ domain of the discrete-time state vector x
Dy ¼ domain of the continuous-time state vector y

f ¼ vector field of the discrete-time dynamics, mapping
Dx � Dy �N�Rþ ! Dx

g ¼ vector field of the continuous-time dynamics, mapping
Dx � Dy �Rþ �Rþ ! Dy

nx ¼ dimension of the discrete-time state vector x
ny ¼ dimension of the continuous-time state vector y
x ¼ discrete-time state vector of the dynamics

x tþk
� �

¼ value of the discrete-time state vector x at time tþk
x t�kð Þ ¼ value of the discrete-time state vector x at time t�k
x0(l) ¼ initial conditions of the discrete-time state vector x, a

function of the update rate l
y ¼ continuous-time state vector of the dynamics

~y tð Þ ¼ error between the true continuous-time state vector y(t)
and the state-dependent equilibrium trajectory
h x tþk
� �

; t
� �

, defined for all t� t0
y(tk) ¼ the value of the true continuous-state vector y at the

discrete-update at time tk. Note that
y tkð Þ ¼ y tþk

� �
¼ y t�kð Þ

~y tþk
� �

¼ value of the error between the true continuous-time state
vector y and the state-dependent equilibrium trajectory
h x tþk
� �

; t
� �

at time tþk
~y t�kð Þ ¼ value of the error between the true continuous-time state

vector y and the state-dependent equilibrium trajectory
h x t�kð Þ; tð Þ at time t�k

y0(l) ¼ initial conditions of the continuous-time state vector y, a
function of the update rate l

z ¼ collection of the state vectors x and ~y

Reduced Model Symbols

h(p, t) ¼ equilibrium trajectory of the isolated continuous-time
dynamics, mapping p; tð Þ 2 Dx �Rþ ! Dy

I k ¼ time interval between tk (inclusive) and tkþ1 (exclusive)
�x ¼ state vector of the reduced-order discrete-time decision

system
�x tþk
� �

¼ value of the reduced-order discrete-time decision system
state vector �x at time tþk

�x t�kð Þ ¼ value of the reduced-order decision system state vector �x
at time t�k

ŷk ¼ state vector of the reduced-order continuous-time
interval correction system defined on the interval I k, a
function of the elapsed time g within the interval

ŷk 0ð Þ ¼ value of the state vector ŷk of the kth interval correction
system at g¼ 0

g ¼ elapsed time within the time interval I k; t� tk
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