Abstract

This study investigates the system-level performance of variable recruitment (VR) fluidic artificial muscle (FAM) actuator bundles using a model that incorporates FAM interaction effects. A VR bundle combines multiple FAMs to act as one actuator in which the FAMs are sequentially recruited to increase overall efficiency. In a VR bundle, inactive/low-pressure FAMs are compressed beyond their free strains, exerting resistive forces opposing that of active FAMs. A recent model that captures this behavior is used to simulate sinusoidal contraction of a VR bundle with a hanging mass load. The implications of inter-FAM effects on the force–strain space of a VR bundle are discussed and a method of recruitment state transition required to track a sinusoid is proposed. The dynamics of the electrohydraulic subsystems are presented and used to evaluate its system efficiency and bandwidth limits. Three different electrohydraulic configurations are considered: (1) continuous motor operation with constant pump displacement, (2) intermittent motor operation with constant pump displacement, and (3) continuous motor operation with variable pump displacement. Simulation results show the superior bandwidth capabilities of VR bundles by demonstrating its ability to track sinusoids with amplitudes up to 16% strain at frequencies greater than 0.5 Hz, compared to that of a single equivalent cross section area motor unit (SEMU). In addition to increased bandwidth limit, system efficiencies averaged over a range of amplitudes show up to 170% increase when comparing a VR bundle using variable pump displacement to a SEMU using constant pump displacement.

References

1.
Tondu
,
B.
,
2012
, “
Modeling of the McKibben Artificial Muscle: A Review
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
225
253
.10.1177/1045389X11435435
2.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
,
20
, pp.
15
38
.10.1109/37.833638
3.
Tondu
,
B.
,
Ippolito
,
S.
,
Guiochet
,
J.
, and
Daidie
,
A.
,
2005
, “
A Seven-Degrees-of-Freedom Robot-Arm Driven by Pneumatic Artificial Muscles for Humanoid Robots
,”
Int. J. Robot. Res.
,
24
(
4
), pp.
257
274
.10.1177/0278364905052437
4.
Ohta
,
P.
,
Valle
,
L.
,
King
,
J.
,
Low
,
K.
,
Yi
,
J.
,
Atkeson
,
C. G.
, and
Park
,
Y.
,
2018
, “
Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and Inflatable Sleeves
,”
Soft Rob.
,
5
(
2
), pp.
204
215
.10.1089/soro.2017.0044
5.
Gordon
,
K.
,
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2006
, “
Mechanical Performance of Artificial Pneumatic Muscles to Power an Ankle–Foot Orthosis
,”
J. Biomech.
,
39
(
10
), pp.
1832
1841
.10.1016/j.jbiomech.2005.05.018
6.
Šitum
,
Ž.
, and
Trslić
,
P.
,
2018
, “
Ball and Beam Balancing Mechanism Actuated With Pneumatic Artificial Muscles
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
055001
.10.1115/1.4040490
7.
Wang
,
J.
,
Liu
,
Z.
, and
Fei
,
Y.
,
2018
, “
Design and Testing of a Soft Rehabilitation Glove Integrating Finger and Wrist Function
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011015
.10.1115/1.4041789
8.
Ashwin
,
K. P.
, and
Ghosal
,
A.
,
2019
, “
A Soft-Robotic End-Effector for Independently Actuating Endoscopic Catheters
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061004
.10.1115/1.4044539
9.
Markus
,
A. T.
,
Sobczyk
,
M. R.
, and
Perondi
,
E. A.
,
2022
, “
Modeling, Control, and Simulation of a 3-Degrees of Freedom Mechanism Actuated by Pneumatic Artificial Muscles for Upper Limb Prosthesis Application
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011002
.10.1115/1.4054084
10.
Steele
,
A. G.
,
Etoundi
,
A.
, and
Hunt
,
A. J.
,
2022
, “
Experimental Verification of Kinematics and Kinetics in a Biomimetic Bipedal Robot
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
014503
.10.1115/1.4054441
11.
Mori
,
M.
,
Suzumori
,
K.
,
Wakimoto
,
S.
,
Kanda
,
T.
,
Takahashi
,
M.
,
Hosoya
,
T.
, and
Takematu
,
E.
,
2010
, “
Development of Power Robot Hand With Shape Adaptability Using Hydraulic McKibben Muscles
,”
IEEE International Conference on Robotics and Automation
, Anchorage, AK, May 3–7, pp.
1162
1168
.10.1109/ROBOT.2010.5509489
12.
Garbulinski
,
J.
,
Balasankula
,
S. C.
, and
Wereley
,
N. M.
,
2021
, “
Characterization and Analysis of Extensile Fluidic Artificial Muscles
,”
Actuators
,
10
(
2
), p.
26
.10.3390/act10020026
13.
Cullinan
,
M. F.
,
Bourke
,
E.
,
Kelly
,
K.
, and
McGinn
,
C.
,
2017
, “
A McKibben Type Sleeve Pneumatic Muscle and Integrated Mechanism for Improved Stroke Length
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011013
.10.1115/1.4035496
14.
Al-Fahaam
,
H.
,
Davis
,
S.
, and
Nefti-Meziani
,
S.
,
2018
, “
The Design and Mathematical Modeling of Novel Extensor Bending Pneumatic Artificial Muscles (EBPAMs) for Soft Exoskeletons
,”
Robotics and Autonomous Systems
, 99, pp. 63–74.10.1016/j.robot.2017.10.010
15.
Jenkins
,
T.
, and
Bryant
,
M.
,
2020
, “
Pennate Actuators: Force, Contraction and Stiffness
,”
Bioinspir. Biomim.
,
15
(
4
), p.
046005
.10.1088/1748-3190/ab860f
16.
Kurumaya
,
S.
,
Suzumori
,
K.
,
Nabae
,
H.
, and
Wakimoto
,
S.
,
2016
, “
Musculoskeletal Lower-Limb Robot Driven by Multifilament Muscles
,”
Robomech. J.
,
3
(
1
), p. 18.10.1186/s40648-016-0061-3
17.
Bryant
,
M.
,
Meller
,
M. A.
, and
Garcia
,
E.
,
2014
, “
Variable Recruitment Fluidic Artificial Muscles: Modeling and Experiments
,”
Smart Mater. Struct.
,
23
, p.
74009
.10.1088/0964-1726/23/7/074009
18.
Robinson
,
R. M.
,
Kothera
,
C. S.
, and
Wereley
,
N. M.
,
2015
, “
Variable Recruitment Testing of Pneumatic Artificial Muscles for Robotic Manipulators
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1642
1652
.10.1109/TMECH.2014.2341660
19.
DeLaHunt
,
S. A.
,
Pillsbury
,
T. E.
, and
Wereley
,
N. M.
,
2016
, “
Variable Recruitment in Bundles of Miniature Pneumatic Artificial Muscles
,”
Bioinspiration Biomimetics
,
11
(
5
), p.
056014
.10.1088/1748-3190/11/5/056014
20.
Henneman
,
E.
,
Somjen
,
G.
, and
Carpenter
,
D. O.
,
1965
, “
Excitability and Inhibitability of Motoneurons of Different Sizes
,”
J. Neurophysiol.
,
28
(
3
), pp.
599
620
.10.1152/jn.1965.28.3.599
21.
Jenkins
,
T. E.
,
Chapman
,
E. M.
, and
Bryant
,
M.
,
2016
, “
Bio-Inspired Online Variable Recruitment Control of Fluidic Artificial Muscles
,”
Smart Mater. Struct.
,
25
(
12
), p.
125016
.10.1088/0964-1726/25/12/125016
22.
Meller
,
M. A.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2014
, “
Reconsidering the McKibben Muscle: Energetics, Operating Fluid, and Bladder Material
,”
J. Intell. Mater. Syst. Struct.
,
25
(
18
), pp.
2276
2293
.10.1177/1045389X14549872
23.
Vemula
,
D.
,
Kim
,
J. Y.
,
Mazzoleni
,
N.
, and
Bryant
,
M.
,
2021
, “
Design, Analysis, and Validation of an Orderly Recruitment Valve for Bio-Inspired Fluidic Artificial Muscles
,”
Bioinspiration Biomimetics
,
17
(
2
), p.
026001
.10.1088/1748-3190/ac4381
24.
Chapman
,
E. M.
, and
Bryant
,
M.
,
2018
, “
Bioinspired Passive Variable Recruitment of Fluidic Artificial Muscles
,”
J. Intell. Mater. Syst. Struct.
,
29
(
15
), pp.
3067
3081
.10.1177/1045389X18783070
25.
Meller
,
M.
,
Kogan
,
B.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2018
, “
Model-Based Feedforward and Cascade Control of Hydraulic McKibben Muscles
,”
Sens. Actuator A Phys.
,
275
, pp.
88
98
.10.1016/j.sna.2018.03.036
26.
Maurya
,
S.
, and
Dutta
,
A.
,
2023
, “
Control of Pneumatic Artificial Muscle Actuated Two DOF Robot Using PD Based PWM Strategy With Feed Forward Outer Control Loop
,”
ASME J. Mech. Rob.
,
15
(
3
), p.
031008
.10.1115/1.4062212
27.
Chapman
,
E. M.
,
Jenkins
,
T. E.
, and
Bryant
,
M.
,
2018
, “
Design and Analysis of Electrohydraulic Pressure Systems for Variable Recruitment in Fluidic Artificial Muscles
,”
Smart Mater. Struct.
,
27
(
10
), p.
105024
.10.1088/1361-665X/aadbff
28.
Chapman
,
E. M.
,
Jenkins
,
T. E.
, and
Bryant
,
M.
,
2017
, “
Modeling and Analysis of a Meso-Hydraulic Climbing Robot With Artificial Muscle Actuation
,”
Bioinspiration Biomimetics
,
12
(
6
), p.
066010
.10.1088/1748-3190/aa7eb0
29.
Chou
,
C.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Robot. Autom.
,
12
(
1
), pp.
90
102
.10.1109/70.481753
30.
Sangian
,
D.
,
Naficy
,
S.
,
Spinks
,
G. M.
, and
Tondu
,
B.
,
2015
, “
The Effect of Geometry and Material Properties on the Performance of a Small Hydraulic McKibben Muscle System
,”
Sens. Actuators A: Phys.
,
234
, pp.
150
157
.10.1016/j.sna.2015.08.025
31.
Kim
,
J. Y.
,
Mazzoleni
,
N.
, and
Bryant
,
M.
,
2021
, “
Modeling of Resistive Forces and Buckling Behavior in Variable Recruitment Fluidic Artificial Muscle Bundles
,”
Actuators
,
10
(
3
), p.
42
.10.3390/act10030042
32.
Mazzoleni
,
N.
,
Kim
,
J. Y.
, and
Bryant
,
M.
,
2022
, “
Motor Unit Buckling in Variable Recruitment Fluidic Artificial Muscle Bundles: Implications and Mitigations
,”
Smart. Mater. Struct.
,
31
(
3
), p.
035004
.10.1088/1361-665X/ac49d9
33.
Loccisano
,
A.
,
2020
, “
Online Variable Recruitment for Pneumatic Artificial Muscles With Springs
,”
Master's thesis
,
KTH Royal Institute of Technology, School of Industrial Engineering and Management
.https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279666
34.
Klute
,
G.
, and
Hannaford
,
B.
,
2000
, “
Accounting for Elastic Energy Storage in McKibben Artificial Muscle Actuators
,”
ASME J. Dyn. Syst. Meas. Control.
,
122
(
2
), pp.
386
388
.10.1115/1.482478
35.
Kothera
,
C. S.
,
Jangid
,
M.
,
Sirohi
,
J.
, and
Wereley
,
N. M.
,
2009
, “
Experimental Characterization and Static Modeling of McKibben Actuators
,”
ASME J. Mech. Des.
,
131
(
9
), p.
091010
.10.1115/1.3158982
36.
Ball
,
E.
, and
Garcia
,
E.
,
2016
, “
Effects of Bladder Geometry in Pneumatic Artificial Muscles
,”
ASME J. Med. Devices
,
10
(
4
), p.
041001
.10.1115/1.4033325
37.
Yu
,
Z.
,
Pillsbury
,
T.
,
Wang
,
G.
, and
Wereley
,
N. M.
,
2019
, “
Hyperelastic Analysis of Pneumatic Artificial Muscle With Filament-Wound Sleeve and Coated Outer Layer
,”
Smart. Mater. Struct.
,
28
(
10
), p.
105019
.10.1088/1361-665X/ab300d
38.
Sarosi
,
J.
,
Biro
,
I.
,
Nemeth
,
J.
, and
Cveticanin
,
L.
,
2015
, “
Dynamic Modeling of a Pneumatic Muscle Actuator With Two-Direction Motion
,”
Mech. Mach. Theory
,
85
, pp.
25
34
.10.1016/j.mechmachtheory.2014.11.006
39.
Kalita
,
B.
, and
Dwivedy
,
D. K.
,
2020
, “
Nonlinear Dynamic Response of Pneumatic Artificial Muscle: A Theoretical and Experimental Study
,”
Int. J. Non Linear Mech.
,
125
, p.
103544
.10.1016/j.ijnonlinmec.2020.103544
40.
Manring
,
N. D.
, and
Fales
,
R. C.
,
2019
,
Hydraulic Control Systems
,
Wiley
, Hoboken, NJ.
41.
Jelali
,
M.
, and
Kroll
,
A.
,
2012
,
Hydraulic Servo-Systems: Modelling, Identification and Control
,
Springer Sciences & Business Media
, Berlin.
42.
Maxon Motor Company,
2015
, “
Maxon Motor Company
,” accessed Jan. 20, 2023, www.maxonmotorusa.com
43.
Meller
,
M.
,
Chipka
,
J.
,
Volkov
,
A.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2016
, “
Improving Actuation Efficiency Through Variable Recruitment Hydraulic McKibben Muscles: Modeling, Orderly Recruitment Control, and Experiments
,”
Bioinspiration Biomimetics
,
11
(
6
), p.
065004
.10.1088/1748-3190/11/6/065004
44.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson Prentice Hall
,
Upper Saddle River, MJ
.
45.
Chipka
,
J.
,
Meller
,
M.
,
Volkov
,
A.
,
Bryant
,
M.
, and
Garcia
,
E.
,
2017
, “
Linear Dynamometer Testing of Hydraulic Artificial Muscles With Variable Recruitment
,”
J. Intell. Mater. Syst. Struct.
,
28
(
15
), pp.
2051
2063
.10.1177/1045389X16682845
You do not currently have access to this content.