Abstract

Design and control co-optimization studies for hybrid vehicles have been proposed in the past. However, such works suffer from difficulties arising due to (a) diverse real- and integer-valued variables, (b) complex nonlinear powertrain dynamics and design interconnections, (c) conflicting objective functions with path constraints, and (d) high computational resources requirements. To meet these challenges, this study presents an efficient co-optimization framework for hybrid electric vehicles (HEVs) which is built using existing algorithms and coordination schemes. Particular emphasis is given to the simultaneous scheme and the decomposition-based scheme. The decomposition-based scheme with the problem decomposition proposed in this work can efficiently handle multitime scale state variables and both integer- and real-valued design and control optimization variables. This is demonstrated by solving the mixed-integer optimal design and control problem of a series hybrid vehicle over a 1-h long drive cycle with time discretization of 1 s. The problem complexity is elevated by using an increasing number of state variables (including battery state of charge, battery energy, and after-treatment system temperature), control variables (such as the engine power and engine on/off), and design parameters (such as the number of battery cells and the type and size of the engine). In addition, a multi-objective cost function is used to find a tradeoff solution between fuel consumption and emissions minimization. The results show that in terms of optimality of the solution, the decomposition-based scheme is comparable with the simultaneous but can give a 14% improvement in computational performance. The effectiveness of the proposed framework is demonstrated by comparing the co-optimization results against a baseline case in which only the optimal control problem is solved. The co-optimized solution yields up to 3.7% average genset efficiency improvement and a fuel consumption reduction to 1.6 kg from 2.5 kg, which is further reduced to 1.5 kg by adding the engine on-off control. Finally, a decision matrix is developed to provide guidance on the selection of the optimization algorithm and coordination scheme for any problem at hand.

References

1.
Huang
,
Y.
,
Surawski
,
N. C.
,
Organ
,
B.
,
Zhou
,
J. L.
,
Tang
,
O. H.
, and
Chan
,
E. F.
,
2019
, “
Fuel Consumption and Emissions Performance Under Real Driving: Comparison Between Hybrid and Conventional Vehicles
,”
Sci. Total Environ.
,
659
, pp.
275
282
.10.1016/j.scitotenv.2018.12.349
2.
Hu
,
X.
,
Han
,
J.
,
Tang
,
X.
, and
Lin
,
X.
,
2021
, “
Powertrain Design and Control in Electrified Vehicles: A Critical Review
,”
IEEE Trans. Transp. Electrif.
,
7
(
3
), pp.
1990
2009
.10.1109/TTE.2021.3056432
3.
Bai
,
S.
, and
Liu
,
C.
,
2021
, “
Overview of Energy Harvesting and Emission Reduction Technologies in Hybrid Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
147
, p.
111188
.10.1016/j.rser.2021.111188
4.
Carlier
,
M.
,
2022
, “
U.S.: PHEV in Use 2021
,” Statista, accessed Feb. 11, 2023, www.statista.com/statistics/801232/hev-sales-in-the-us
5.
Reuters
,
2020
, “
China's NEV Sales to Account for 20% of New Car Sales by 2025, 50% by 2035
,” Reuters, accessed Oct. 27, 2020, www.reuters.com/article/us-china-autos-electric-idUSKBN27C08C
6.
Silvas
,
E.
,
Hofman
,
T.
,
Murgovski
,
N.
,
Etman
,
L. P.
, and
Steinbuch
,
M.
,
2016
, “
Review of Optimization Strategies for System-Level Design in Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
66
(
1
), pp.
1
1
.10.1109/TVT.2016.2547897
7.
Cohen
,
G.
,
1978
, “
Optimization by Decomposition and Coordination: A Unified Approach
,”
IEEE Trans. Autom. Control
,
23
(
2
), pp.
222
232
.10.1109/TAC.1978.1101718
8.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsov
,
A.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the 2001 American Control Conference
,
IEEE
, Vol.
3
,
Arlington, VA
, June 25–27, pp.
1864
1869
.10.1109/ACC.2001.946008
9.
Michelena
,
N.
,
Park
,
H.
, and
Papalambros
,
P. Y.
,
2003
, “
Convergence Properties of Analytical Target Cascading
,”
AIAA J.
,
41
(
5
), pp.
897
905
.10.2514/2.2025
10.
Assanis
,
D.
,
Delagrammatikas
,
G.
,
Fellini
,
R.
,
Filipi
,
Z.
,
Liedtke
,
J.
,
Michelena
,
N.
,
Papalambros
,
P.
,
Reyes
,
D.
,
Rosenbaum
,
D.
,
Sales
,
A.
, and
Sasena
,
M.
,
1999
, “
Optimization Approach to Hybrid Electric Propulsion System Design
,”
Mech. Struct. Mach.
,
27
(
4
), pp.
393
421
.10.1080/08905459908915705
11.
Liu
,
J.
, and
Peng
,
H.
,
2010
, “
A Systematic Design Approach for Two Planetary Gear Split Hybrid Vehicles
,”
Veh. Syst. Dyn.
,
48
(
11
), pp.
1395
1412
.10.1080/00423114.2010.512634
12.
Bayrak
,
A. E.
,
Ren
,
Y.
, and
Papalambros
,
P. Y.
,
2013
, “
Design of Hybrid-Electric Vehicle Architectures Using Auto-Generation of Feasible Driving Modes
,”
ASME Paper No. DETC2013-13043
.10.1115/DETC2013-13043
13.
Sundström
,
O.
,
Ambühl
,
D.
, and
Guzzella
,
L.
,
2010
, “
On Implementation of Dynamic Programming for Optimal Control Problems With Final State Constraints
,”
Oil Gas Sci. Technol.–Revue de L'Institut Français du Pétrole
,
65
(
1
), pp.
91
102
.10.2516/ogst/2009020
14.
Pisu
,
P.
, and
Rizzoni
,
G.
,
2007
, “
A Comparative Study of Supervisory Control Strategies for Hybrid Electric Vehicles
,”
IEEE Trans. Control Systems Technol.
,
15
(
3
), pp.
506
518
.10.1109/TCST.2007.894649
15.
Mallon
,
K.
, and
Assadian
,
F.
,
2021
, “
Robustification Through Minimax Dynamic Programing and Its Implication for Hybrid Vehicle Energy Management Strategies
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
9
), p.
091001
.10.1115/1.4050252
16.
Banvait
,
H.
,
Anwar
,
S.
, and
Chen
,
Y.
,
2009
, “
A Rule-Based Energy Management Strategy for Plug-in Hybrid Electric Vehicle (Phev)
,”
American Control Conference
,
IEEE
,
St. Louis, MO
,
June 10–12
, pp.
3938
3943
.10.1109/ACC.2009.5160242
17.
Zhao
,
J.
, and
Sciarretta
,
A.
,
2016
, “
Design and Control Co-Optimization for Hybrid Powertrains: Development of Dedicated Optimal Energy Management Strategy
,”
IFAC-PapersOnLine
,
49
(
11
), pp.
277
284
.10.1016/j.ifacol.2016.08.042
18.
Silvas
,
E.
,
Backx
,
E.
,
Hofman
,
T.
,
Voets
,
H.
, and
Steinbuch
,
M.
,
2014
, “
Design of Power Steering Systems for Heavy-Duty Long-Haul Vehicles
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
3930
3935
.10.3182/20140824-6-ZA-1003.02780
19.
Silvas
,
E.
,
Turan
,
O.
,
Hofman
,
T.
, and
Steinbuch
,
M.
,
2013
, “
Modeling for Control and Optimal Design of a Power Steering Pump and an Air Conditioning Compressor Used in Heavy Duty Trucks
,”
2013 IEEE Vehicle Power and Propulsion Conference (VPPC)
,
IEEE
,
Beijing, China
, Oct.
15–18
, pp.
1
6
.10.1109/VPPC.2013.6671693
20.
Azad
,
S.
,
Behtash
,
M.
,
Houshmand
,
A.
, and
Alexander-Ramos
,
M. J.
,
2019
, “
Phev Powertrain co-Design With Vehicle Performance Considerations Using Mdsdo
,”
Struct. Multidiscip. Optim.
,
60
(
3
), pp.
1155
1169
.10.1007/s00158-019-02264-0
21.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2021
, “
Robust Combined Design and Control Optimization of Hybrid-Electric Vehicles Using MDSDO
,”
IEEE Trans. Veh. Technol.
,
70
(
5
), pp.
4139
4152
.10.1109/TVT.2021.3071863
22.
Houshmand
,
A.
,
2016
, “
Multidisciplinary dynamic system design optimization of hybrid electric vehicle powertrains
,” Ph.D. thesis,
University of Cincinnati
,
Cincinnati, OH
.
23.
Anil
,
V.
,
Zhao
,
T.
,
Zhao
,
M.
,
Villani
,
M.
,
Ahmed
,
Q.
, and
Rizzoni
,
G.
,
2020
, “
Powertrain Design Optimization for a Range-Extended Electric Pickup and Delivery Truck
,”
SAE Int. J.Commer. Veh.
,
13
(
3
), pp.
189
203
.www.sae.org/publications/technical-papers/content/02-13-03-0014/
24.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
A Single-Loop Reliability-Based Mdsdo Formulation for Combined Design and Control Optimization of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021703
.10.1115/1.4047870
25.
Murgovski
,
N.
,
Johannesson
,
L.
,
Sjöberg
,
J.
, and
Egardt
,
B.
,
2012
, “
Component Sizing of a Plug-in Hybrid Electric Powertrain Via Convex Optimization
,”
Mechatronics
,
22
(
1
), pp.
106
120
.10.1016/j.mechatronics.2011.12.001
26.
Ramakrishnan
,
K.
,
Mastinu
,
G.
, and
Gobbi
,
M.
,
2019
, “
Multidisciplinary Design of Electric Vehicles Based on Hierarchical Multi-Objective Optimization
,”
ASME J. Mech. Des.
,
141
(
9
), p.
091404
.10.1115/1.4043840
27.
Fahdzyana
,
C. A.
,
Salazar
,
M.
,
Donkers
,
T.
, and
Hofman
,
T.
,
2021
, “
Integrated Design of a CVT-Equipped Electric Powertrain Via Analytical Target Cascading
,”
2021 European Control Conference (ECC)
,
Delft, The Netherlands
,
June 29-July 2
, pp.
927
932
.10.23919/ECC54610.2021.9655001
28.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
A Decomposition-Based Optimization Algorithm for Combined Plant and Control Design of Interconnected Dynamic Systems
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061703
.10.1115/1.4046240
29.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.10.1007/s10107-004-0559-y
30.
Bonami
,
P.
,
Biegler
,
L. T.
,
Conn
,
A. R.
,
Cornuéjols
,
G.
,
Grossmann
,
I. E.
,
Laird
,
C. D.
,
Lee
,
J.
,
Lodi
,
A.
,
Margot
,
F.
,
Sawaya
,
N.
, and
Wächter
,
A.
,
2008
, “
An Algorithmic Framework for Convex Mixed Integer Nonlinear Programs
,”
Discrete Optim.
,
5
(
2
), pp.
186
204
.10.1016/j.disopt.2006.10.011
31.
MathWorks
,
2022
, “
Optimization Toolbox Documentation
,”
The MathWorks
,
Natick, MA
.
32.
NREL DriveCAT,
2020
,
Chassis Dynamometer Drive Cycles.
National Renewable Energy Laboratory
,
U.S. EPA, Golden, CO.
33.
Villani
,
M.
,
Shiledar
,
A.
,
Zhao
,
T.
,
Lana
,
C.
,
Le
,
D.
,
Ahmed
,
Q.
, and
Rizzoni
,
G.
,
2021
, “
Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle
,”
SAE
Paper No. 2021-24-0103.10.4271/2021-24-0103
34.
Andersson
,
J. A.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
Casadi: A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Program. Computation
,
11
(
1
), pp.
1
36
.10.1007/s12532-018-0139-4
35.
Leek
,
V.
,
2016
, “
An Optimal Control Toolbox for MATLAB Based on CasADi
,”
Linköping University
,
Linköping, Sweden
.
36.
Sundström
,
O.
, and
Guzzella
,
L.
,
2009
, “
A Generic Dynamic Programming Matlab Function
,”
IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)
,
St. Petersburg, Russia
, pp.
1625
1630
.10.1109/CCA.2009.5281131
37.
Elnagar
,
G.
,
Kazemi
,
M. A.
, and
Razzaghi
,
M.
,
1995
, “
The Pseudospectral Legendre Method for Discretizing Optimal Control Problems
,”
IEEE Trans. Autom. Control
,
40
(
10
), pp.
1793
1796
.10.1109/9.467672
38.
Bayrak
,
A. E.
,
Kang
,
N.
, and
Papalambros
,
P. Y.
,
2016
, “
Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071405
.10.1115/1.4033655
39.
Tosserams
,
S.
,
Etman
,
L.
,
Papalambros
,
P.
, and
Rooda
,
J.
,
2006
, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
176
189
.10.1007/s00158-005-0579-0
40.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.10.1115/1.1582501
41.
Fellini
,
R.
,
Kim
,
H. M.
,
Kokkolaras
,
M.
,
Michelena
,
N.
, and
Papalambros
,
P. Y.
,
2001
, “
Target Cascading for Design of Product Families
,”
Proceedings of 11th World Congress of Structural and Multidisciplinary Optimization
,
Dalian University of Technology Press
,
Sydney, Australia
,
June 4–8
.https://www.researchgate.net/publication/2371502_Target_Cascading_for_Design_of_Product_Families
42.
Egardt
,
B.
,
Murgovski
,
N.
,
Pourabdollah
,
M.
, and
Mardh
,
L. J.
,
2014
, “
Electromobility Studies Based on Convex Optimization: Design and Control Issues Regarding Vehicle Electrification
,”
IEEE Control Syst. Mag.
,
34
(
2
), pp.
32
49
.10.1109/MCS.2013.2295709
43.
Dranka
,
G. G.
,
Ferreira
,
P.
, and
Vaz
,
A. I. F.
,
2021
, “
A Review of co-Optimization Approaches for Operational and Planning Problems in the Energy Sector
,”
Appl. Energy
,
304
, p.
117703
.10.1016/j.apenergy.2021.117703
44.
Vishwanath
,
A.
,
Anwar
,
H.
,
Chunodkar
,
A.
, and
Ahmed
,
Q.
,
2021
, “
Comprehensive Energy Footprint Benchmarking of Strong Parallel Electrified Powertrain
,” pre-print arXiv:2106.00243
45.
Allison
,
J.
,
Roth
,
B.
,
Kokkolaras
,
M.
,
Kroo
,
I.
, and
Papalambros
,
P.
,
2006
, “
Aircraft Family Design Using Decomposition-Based Methods
,”
AIAA Paper No. 2006-6950
.10.2514/6.2006-6950
You do not currently have access to this content.