Abstract

Due to the breadth and complexity of spatial motion, and the nonlinear coupling caused by multiple degree-of-freedom, the control difficulties of spatial cooperative multirobot system are two mainly aspects, the modeling method and the dispose of uncertainty. For modeling, the process of directly using ordinary methods such as Lagrange mechanics are very complex. For control, the external disturbances and imperceptible errors will lead to the instability of dynamic system, these factors are collectively referred to as uncertainty. In this paper, a universal modeling method based on spatial cooperative multirobot system was proposed, and an adaptive robust controller was designed to solve the control problems. Simplify the connection link into a load and divide the system into two symmetrical subsystems by disconnecting the load center. The inherent physical position and given trajectories were unified as constraints. The constraints applied on system are creatively converted into consistent standard form through the Udwadia–Kalaba (U–K) method, and the corresponding constraints can be generated easily from the Udwadia–Kalaba basic equations. In addition, a nominal term to stable the system and an adaptive term was added to the controller. The adaptive term works through an adaptive parameter, the parameter estimates the uncertainty bound, thus, only the boundedness of uncertainty should be known, and more accurate control input can be gained. Eventually, the correctness of the model and controller has been confirmed through numerical simulation.

References

1.
Yan
,
Z.
,
Jouandeau
,
N.
, and
Cherif
,
A. A.
,
2013
, “
A Survey and Analysis of Multi-Robot Coordination
,”
Int. J. Adv. Rob. Syst.
,
10
(
12
), pp.
399
416
.10.5772/57313
2.
Deng
,
W.
,
Zhou
,
H.
,
Zhou
,
J.
, and
Yao
,
J.
,
2023
, “
Neural Network-Based Adaptive Asymptotic Prescribed Performance Tracking Control of Hydraulic Manipulators
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
53
(
1
), pp.
285
295
.10.1109/TSMC.2022.3178626
3.
Lee
,
C. H.
,
2004
, “
A Survey of PID Controller Design Based on Gain and Phase Margins
,”
Int. J. Comput. Cognit.
,
2
(
3
), pp.
63
100
.https://www.researchgate.net/publication/244288576_A_survey_of_pid_controller_design_based_on_gain_and_phase_margins
4.
Chen
,
Y.
,
Zhang
,
N.
, and
Yang
,
J.
,
2023
, “
A Survey of Recent Advances on Stability Analysis, State Estimation and Synchronization Control for Neural Networks
,”
Neurocomputing
,
515
, pp.
26
36
.10.1016/j.neucom.2022.10.020
5.
Hou
,
Z. S.
, and
Wang
,
Z.
,
2013
, “
From Model-Based Control to Data-Driven Control: Survey, Classification and Perspective
,”
Inf. Sci.
,
235
, pp.
3
35
.10.1016/j.ins.2012.07.014
6.
Yiu
,
Y.
,
Cheng
,
H.
,
Xiong
,
Z.
,
Liu
,
G.
, and
Li
,
Z.
,
2001
, “
On the Dynamics of Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seoul, South Korea, May 21–26, pp.
3766
3771
.10.1109/ROBOT.2001.933204
7.
Tsai
,
C. C.
,
Cheng
,
M. B.
, and
Lin
,
S. C.
,
2006
, “
Dynamic Modeling and Tracking Control of a Nonholonomic Wheeled Mobile Manipulator With Dual Arms
,”
J. Intell. Rob. Syst.
,
47
(
4
), pp.
317
340
.10.1007/s10846-006-9072-2
8.
Gao
,
H.
,
Zhang
,
X.
,
Yuan
,
J.
, and
Fang
,
Y.
,
2023
, “
NEGL: Lightweight and Efficient Neighborhood Encoding-Based Global Localization for Unmanned Ground Vehicles
,”
IEEE Trans. Veh. Technol.
,
72
(
6
), pp.
7111
7122
.10.1109/TVT.2023.3239213
9.
Zhang
,
S.
,
Wu
,
Y.
, and
He
,
X.
,
2021
, “
Cooperative Output Feedback Control of a Mobile Dual Flexible Manipulator
,”
J. Franklin Inst.
,
358
(
14
), pp.
6941
6961
.10.1016/j.jfranklin.2021.06.004
10.
Enferadi
,
J.
, and
Jafari
,
K.
,
2020
, “
A Kane's Based Algorithm for Closed-Form Dynamic Analysis of a New Design of a 3RSS-S Spherical Parallel Manipulator
,”
Multibody Syst. Dyn.
,
49
(
4
), pp.
377
394
.10.1007/s11044-020-09736-y
11.
Deng
,
X.
,
Sun
,
X.
, and
Liu
,
S.
,
2019
, “
Leader-Following Consensus Control of Nonlinear Multi-Agent Systems With Input Constraint
,”
Int. J. Aeronaut. Space Sci.
,
20
(
1
), pp.
195
203
.10.1007/s42405-018-0100-9
12.
Han
,
S. I.
, and
Lee
,
J. M.
,
2015
, “
Decentralized Neural Network Control for Guaranteed Tracking Error Constraint of a Robot Manipulator
,”
Int. J. Control, Autom. Syst.
,
13
(
4
), pp.
906
915
.10.1007/s12555-014-0132-2
13.
Udwadia
,
F. E.
,
2016
, “
Constrained Motion of Hamiltonian Systems
,”
Nonlinear Dyn.
,
84
(
3
), pp.
1135
1145
.10.1007/s11071-015-2558-3
14.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1992
, “
A New Perspective on Constrained Motion
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
439
(
1906
), pp.
407
410
.10.1098/rspa.1992.0158
15.
Udwadia
,
F. E.
,
2003
, “
A New Perspective on Tracking Control of Nonlinear Structural and Mechanical Systems
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
459
(
2035
), pp.
1783
1800
.10.1098/rspa.2002.1062
16.
Nielsen
,
M. C.
,
Blanke
,
M.
, and
Schjolberg
,
I.
,
2016
, “
Efficient Modelling Methodology for Reconfigurable Underwater Robots
,”
IFAC-PapersOnLine
,
49
(
23
), pp.
74
80
.10.1016/j.ifacol.2016.10.324
17.
Qin
,
W.
,
Shangguan
,
W. B.
,
Yin
,
H.
,
Chen
,
Y. H.
, and
Huang
,
J.
,
2021
, “
Constraint-Following Control Design for Active Suspension Systems
,”
Mech. Syst. Signal Process.
,
154
, p.
107578
.10.1016/j.ymssp.2020.107578
18.
Sun
,
Q.
,
Yang
,
G.
,
Wang
,
X.
, and
Chen
,
Y. H.
,
2021
, “
Optimizing Constraint Obedience for Mechanical Systems: Robust Control and Non-Cooperative Game
,”
Mech. Syst. Signal Process.
,
149
, p.
107207
.10.1016/j.ymssp.2020.107207
19.
da Cruz Figueredo
,
L. F.
,
Adorno
,
B. V.
, and
Ishihara
,
J. Y.
,
2021
, “
Robust H∞ Kinematic Control of Manipulator Robots Using Dual Quaternion Algebra
,”
Automatica
,
132
, p.
109817
.10.1016/j.automatica.2021.109817
20.
Hu
,
H.
, and
Cao
,
J.
,
2022
, “
Adaptive Variable Impedance Control of Dual-Arm Robots for Slabstone Installation
,”
ISA Trans.
,
128
, pp.
397
408
.10.1016/j.isatra.2021.10.020
21.
Yu
,
X.
,
He
,
W.
,
Li
,
Q.
,
Li
,
Y.
, and
Li
,
B.
,
2021
, “
Human-Robot Co-Carrying Using Visual and Force Sensing
,”
IEEE Trans. Ind. Electron.
,
68
(
9
), pp.
8657
8666
.10.1109/TIE.2020.3016271
22.
Yuan
,
M.
, and
Zhang
,
X.
,
2022
, “
Stability and Fast Transient Performance Oriented Motion Control of a Direct-Drive System With Modeling Uncertainties, Velocity, and Input Constraints
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5926
5935
.10.1109/TMECH.2022.3191201
23.
Deng
,
W.
,
Yao
,
J.
,
Wang
,
Y.
,
Yang
,
X.
, and
Chen
,
J.
,
2021
, “
Output Feedback Backstepping Control of Hydraulic Actuators With Valve Dynamics Compensation
,”
Mech. Syst. Signal Process.
,
158
, p.
107769
.10.1016/j.ymssp.2021.107769
24.
Shang
,
D.
,
Li
,
X.
,
Yin
,
M.
, and
Li
,
F.
,
2022
, “
Speed Control Method for Dual-Flexible Manipulator With a Telescopic Arm Considering Bearing Friction Based on Adaptive PI Controller With DOB
,”
Alexandria Eng. J.
,
61
(
6
), pp.
4741
4756
.10.1016/j.aej.2021.10.026
25.
Yang
,
S.
,
Han
,
J.
,
Xia
,
L.
, and
Chen
,
Y. H.
,
2020
, “
An Optimal Fuzzy-Theoretic Setting of Adaptive Robust Control Design for a Lower Limb Exoskeleton Robot System
,”
Mech. Syst. Signal Process.
,
141
, p.
106706
.10.1016/j.ymssp.2020.106706
26.
Yim
,
W.
,
Selvarajan
,
M.
, and
Wells
,
W. R.
,
1999
, “
Sliding Mode Cooperative Motion Control of Dual Arm Manipulators
,”
Artif. Life Rob.
,
3
(
3
), pp.
166
169
.10.1007/BF02481134
27.
Baigzadehnoe
,
B.
,
Rahmani
,
Z.
,
Khosravi
,
A.
, and
Rezaie
,
B.
,
2017
, “
On Position/Force Tracking Control Problem of Cooperative Robot Manipulators Using Adaptive Fuzzy Backstepping Approach
,”
ISA Trans.
,
70
, pp.
432
446
.10.1016/j.isatra.2017.07.029
28.
Zhu
,
D.
,
Cui
,
A.
,
Du
,
B.
, and
Zhu
,
P.
,
2022
, “
Dual-Mode Synchronization Predictive Control of Robotic Manipulator
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
11
), p.
111002
.10.1115/1.4055085
29.
Deng
,
W.
, and
Yao
,
J.
,
2020
, “
Extended-State-Observer-Based Adaptive Control of Electrohydraulic Servomechanisms Without Velocity Measurement
,”
IEEE/ASME Trans. Mechatron.
,
25
(
3
), pp.
1151
1161
.10.1109/TMECH.2019.2959297
30.
Liu
,
J.
, and
Liu
,
R.
,
2016
, “
New Approach for Dynamics Modeling of Dual-Arm Cooperating Manipulators
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
42
(
9
), pp.
1903
1910
.10.13700/j.bh.1001-5965.2015.0555
31.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1995
,
Analytical Dynamics. A New Approach
,
Cambridge University Press
,
Cambridge, UK
.
32.
Chen
,
Y. H.
,
Leitmann
,
G.
, and
Chen
,
J.
,
1998
, “
Robust Control for Rigid Serial Manipulators: A General Setting
,”
Proceedings of the 1998 American Control Conference
(
ACC
), Philadelphia, PA, June 26, pp.
912
916
.10.1109/ACC.1998.703540
33.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control, Prentice-Hall
,
Englewood Cliffs
,
NJ
.
34.
Corless
,
M.
, and
Leitmann
,
G.
,
1981
, “
Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems
,”
IEEE Trans. Autom. Control
,
26
(
5
), pp.
1139
1144
.10.1109/TAC.1981.1102785
35.
Chen
,
Y. H.
,
1986
, “
On the Deterministic Performance of Uncertain Dynamical Systems
,”
Int. J. Control
,
43
(
5
), pp.
1557
1579
.10.1080/00207178608933559
You do not currently have access to this content.