Abstract

The lower limb exoskeleton can improve mobility and safety during rehabilitation for human. However, most current exoskeleton systems are not capable of providing variable joint stiffness in response to changing external demands. In this paper, a knee exoskeleton based on the series elastic actuator (SEA) is designed for safe human-computer interaction. The structural dimensions of the exoskeleton actuation mechanism were optimized based on gait biomechanics to ensure stability and compactness. While maintaining the mechanism range of motion (ROM), this optimization ensures that less peak force is required during the gait cycle. However, the insertion of series elastic actuators inevitably brings new challenges for high precision control of the exoskeleton, such as the problems of modeling errors, compliance, friction, and external disturbances in the exoskeleton joint. To achieve high precision control of the exoskeleton, an extended disturbance observer (EDO) based command filtered backstepping control (CFBC) of the knee exoskeleton is developed. The effective observation of friction, external disturbances, and modeling errors in the system is obtained by the EDO. Compared with conventional backstepping control, the CFBC can not only solve the “explosion of complexity” problem through a command filter but also reduce filter errors by an error compensation mechanism. Based on the Lyapunov stability, all signals in the closed-loop system are semiglobal uniformly ultimately bounded. Finally, comparison simulation results demonstrate the effectiveness of the proposed control approach.

References

1.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Qin
,
L.
, and
Liao
,
W. H.
,
2019
, “
Knee Exoskeletons for Gait Rehabilitation and Human Performance Augmentation: A State-of-the-Art
,”
Mech. Mach. Theory
,
134
, pp.
499
511
.10.1016/j.mechmachtheory.2019.01.016
2.
Yan
,
T.
,
Cempini
,
M.
,
Oddo
,
M.
, and
Vitiello
,
N.
,
2015
, “
Robotics and Autonomous Systems Review of Assistive Strategies in Powered Lower-Limb Orthoses and Exoskeletons
,”
Rob. Auton. Syst.
,
64
, pp.
120
136
.10.1016/j.robot.2014.09.032
3.
Ge
,
L.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
On the Design and Control of Highly Backdrivable Lower-Limb Exoskeletons: A Discussion of Past and Ongoing Work
,”
IEEE Control Systems
,
38
(
6
), pp.
88
113
.10.1109/MCS.2018.2866605
4.
Beyl
,
P.
,
Knaepen
,
K.
,
Duerinck
,
S.
,
Van Damme
,
M.
,
Vanderborght
,
B.
,
Meeusen
,
R.
, and
Lefeber
,
D.
,
2011
, “
Safe and Compliant Guidance by a Powered Knee Exoskeleton for Robot-Assisted Rehabilitation of Gait
,”
Adv. Rob.
,
25
(
5
), pp.
513
535
.10.1163/016918611X558225
5.
Aguirre-Ollinger
,
G.
, and
Yu
,
H.
,
2020
, “
Lower-Limb Exoskeleton With Variable-Structure Series Elastic Actuators: Phase-Synchronized Force Control for Gait Asymmetry Correction
,”
IEEE Trans. Rob.
, 37(
3
), pp.
763
779
.10.1109/T RO.2020.3034017
6.
Knaepen
,
K.
,
Beyl
,
P.
,
Duerinck
,
S.
,
Hagman
,
F.
,
Lefeber
,
D.
, and
Meeusen
,
R.
,
2014
, “
Human–Robot Interaction: Kinematics and Muscle Activity Inside a Powered Compliant Knee Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
6
), pp.
1128
1137
.10.1109/TNSRE.2014.2324153
7.
Ma
,
H.
,
Lai
,
W. Y.
,
Liao
,
W. H.
,
Fong
,
T. P.
, and
Chan
,
K. M.
,
2013
, “
Design and Control of a Powered Knee Orthosis for Gait Assistance
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Wollongong, Australia, July 9–12, pp. 816-821.10.1109/AIM.2013.6584194
8.
Hao
,
M.
,
Bing
,
C.
,
Ling
,
Q.
, and
Liao
,
W. H.
,
2017
, “
Design and Testing of a Regenerative Magnetorheological Actuator for Assistive Knee Braces
,”
Smart Mater. Struct.
,
26
(
3
), p.
035013
.10.1088/1361-665X/aa57c5
9.
Rifa
,
H.
,
Mohammed
,
S.
,
Hassani
,
W.
, and
Amirat
,
Y.
,
2013
, “
Nested Saturation Based Control of an Actuated Knee Joint Orthosis
,”
Mechatronics
,
23
(
8
), pp.
1141
1149
.10.1016/j.mechatronics.2013.09.007
10.
Shorter
,
K. A.
,
Kogler
,
G. F.
,
Loth
,
E.
,
Durfee
,
W. K.
, and
Hsiao-Wecksler
,
E. T.
,
2011
, “
A Portable Powered Ankle-Foot Orthosis for Rehabilitation
,”
J. Rehabil. Res. Dev.
,
48
(
4
), pp.
459
472
.10.1682/JRRD.2010.04.0054
11.
Noel
,
M.
,
Cantin
,
B.
,
Lambert
,
S.
,
Gosselin
,
C. M.
, and
Bouyer
,
L. J.
,
2008
, “
An ElectroHydraulic Actuated Ankle Foot Orthosis to Generate Force Fields and to Test Proprioceptive Reflexes During Human Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
16
(
4
), pp.
390
399
.10.1109/TNSRE.2008.926714
12.
Sanz-Merodio
,
D.
,
Cestari
,
M.
,
Arevalo
,
J. C.
, and
Garcia
,
E.
,
2012
, “
A Lower-Limb Exoskeleton for Gait Assistance in Quadriplegia
,” IEEE International Conference on Robotics and Biomimetics (
ROBIO
), Guangzhou, China, Dec. 11-14, pp.
122
127
.10.1109/ROBIO.2012.6490954
13.
Isik
,
K.
,
Thomas
,
G. C.
, and
Sentis
,
L.
,
2018
, “
A Fixed Structure Gain Selection Strategy for High Impedance Series Elastic Actuator Behavior
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
2
), p.
021009
.10.1115/1.4041449
14.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2012
, “
A Compact Rotary Series Elastic Actuator for Human Assistive Systems
,”
Mechatronics, IEEE/ASME Trans.
,
17
(
2
), pp.
288
297
.10.1109/TMECH.2010.2100046
15.
Kamali
,
K.
,
Akbari
,
A. A.
, and
Akbarzadeh
,
A.
,
2016
, “
Trajectory Generation and Control of a Knee Exoskeleton Based on Dynamic Movement Primitives for Sit-to-Stand Assistance
,”
Adv. Rob. Int. J. Rob. Soc. Jpn. Adv. Rob.
,
30
(
13
), pp.
846
860
.10.1080/01691864.2016.1154800
16.
Soliman
,
A.
,
Ribeiro
,
G. A.
,
Gan
,
D.
, and
Rastgaar
,
M.
,
2023
, “
Feasibility Design and Control of a Lower Leg Gait Emulator Utilizing a Mobile 3-RPR Parallel Manipulator
,”
ASME J. Mech. Rob.
,
15
(
1
), pp.
1
24
.10.1115/1.4053825
17.
Song
,
Y.
,
Xia
,
Y.
,
Wang
,
J.
,
Li
,
J.
,
Wang
,
C.
,
Han
,
Y.
, and
Xiao
,
K.
,
2022
, “
Barrier Lyapunov Function-Based Adaptive Prescribed Performance Control of the PMSM Used in Robots With Full-State and Input Constraints
,”
J. Vib. Control
, epub.10.1177/10775463211063256
18.
Jing
,
X. J.
,
Pan
,
H.
, and
Sun
,
W. C.
,
2017
, “
Robust Finite-Time Tracking Control for Nonlinear Suspension Systems Via Disturbance Compensation
,”
Mech. Syst. Signal Process.
,
88
, pp.
49
61
.10.1016/j.ymssp.2016.11.012
19.
Mattar
,
E.
,
2013
, “
A Survey of Bio-Inspired Robotics Hands Implementation: New Directions in Dexterous Manipulation
,”
Rob. Auton. Syst.
,
61
(
5
), pp.
517
544
.10.1016/j.robot.2012.12.005
20.
Pratt
,
J.
,
Krupp
,
B.
, and
Morse
,
C.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Robot
,
29
(
3
), pp.
234
241
.10.1108/01439910210425522
21.
Ohnishi
,
K.
,
Shibata
,
M.
, and
Murakami
,
T.
,
1996
, “
Motion Control for Advanced Mechatronics
,”
IEEE/ASME Trans. Mechatronics
,
1
(
1
), pp.
56
67
.10.1109/3516.491410
22.
Sariyildiz
,
E.
, and
Ohnishi
,
K.
,
2015
, “
On the Explicit Robust Force Control Via Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1581
1589
.10.1109/TIE.2014.2361611
23.
Na
,
J.
,
Chen
,
A. S.
,
Herrmann
,
G.
,
Burke
,
R.
, and
Brace
,
C.
,
2018
, “
Vehicle Engine Torque Estimation Via Unknown Input Observer and Adaptive Parameter Estimation
,”
IEEE Trans. Veh. Technol.
,
67
(
1
), pp.
409
422
.10.1109/TVT.2017.2737440
24.
Gao
,
Z.
,
Liu
,
X.
, and
Chen
,
M.
,
2016
, “
Unknown Input Observer-Based Robust Fault Estimation for Systems Corrupted by Partially Decoupled Disturbances
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
1
1
.10.1109/T IE.2015.2497201
25.
Sun
,
L.
,
Zhang
,
Y.
,
Li
,
D.
, and
Lee
,
K. Y.
,
2019
, “
Tuning of Active Disturbance Rejection Control With Application to Power Plant Furnace Regulation
,”
Control Eng. Pract.
,
92
, p.
104122
.10.1016/j.conengprac.2019.104122
26.
Sun
,
L.
,
Shen
,
J.
,
Qingsong
,
H.
, and
Lee Kwang
,
Y.
,
2018
, “
Data-Driven Oxygen Excess Ratio Control for Proton Exchange Membrane Fuel Cell
,”
Appl. Energy
,
231
, pp.
866
875
.10.1016/j.apenergy.2018.09.036
27.
Li
,
S.
,
Yang
,
J.
,
Chen
,
W. H.
, and
Chen
,
X.
,
2012
, “
Generalized Extended State Observer Based Control for Systems With Mismatched Uncertainties
,”
IEEE Trans. Ind. Electron.
,
59
(
12
), pp.
4792
4802
.10.1109/TIE.2011.2182011
28.
Paine
,
N.
,
Oh
,
S.
, and
Sentis
,
L.
,
2014
, “
Design and Control Considerations for High-Performance Series Elastic Actuators
,”
IEEE/ASME Trans. Mechatronics
,
19
(
3
), pp.
1080
1091
.10.1109/TMECH.2013.2270435
29.
Lu
,
J.
,
Haninger
,
K.
,
Chen
,
W.
, and
Tomizuka
,
M.
,
2015
, “
Design and Torque-Mode Control of a Cable-Driven Rotary Series Elastic Actuator for Subject-Robot Interaction
,”
IEEE
International Conference on Advanced Intelligent Mechatronics, Busan, South Korea, July 7–11, pp.
158
164
.10.1109/AIM.2015.7222525
30.
Meng
,
W.
,
Lei
,
S.
,
Wei
,
Y.
,
Shuai
,
D.
, and
Liu
,
J.
,
2017
, “
Continuous Robust Control for Series Elastic Actuator With Unknown Payload Parameters and External Disturbances
,”
IEEE/CAA J. Automat. Sin.
,
4
(
4
), pp.
620
627
.10.1109/JAS.2017.7510610
31.
Sariyildiz
,
E.
,
Gong
,
C.
, and
Yu
,
H.
,
2016
, “
An Active Disturbance Rejection Controller Design for the Robust Position Control of Series Elastic Actuators
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Daejeon, South Korea, Oct. 19–14, pp.
266
272
.10.1109/IROS.2016.7759065
32.
Sariyildiz
,
E.
,
Gong
,
C.
, and
Yu
,
H.
,
2017
, “
A Unified Robust Motion Controller Design for Series Elastic Actuators
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2229
2240
.10.1109/TMECH.2017.2719682
33.
Chen
,
W. H.
,
2004
, “
Disturbance Observer Based Control for Nonlinear Systems
,”
IEEE/ASME Trans. Mechatronics
,
9
(
4
), pp.
706
710
.10.1109/TMECH.2004.839034
34.
Ding
,
F.
,
Huang
,
J.
,
Wang
,
Y.
,
Zhang
,
J.
, and
He
,
S.
,
2017
, “
Sliding Mode Control With an Extended Disturbance Observer for a Class of Underactuated System in Cascaded Form
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2571
2582
.10.1007/s11071-017-3824-3
35.
Ginoya
,
D.
,
Shendge
,
P. D.
, and
Phadke
,
S. B.
,
2014
, “
Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
61
(
4
), pp.
1983
1992
.10.1109/TIE.2013.2271597
36.
Wang
,
W.
, and
Gao
,
Z.
,
2003
, “
A Comparison Study of Advanced State Observer Design Techniques
,”
Proceedings of American Control Conference
, Denver, CO, June 4–6, pp.
4754
4759
.10.1109/ACC.2003.1242474
37.
Kim
,
M. S.
, and
Lee
,
J. S.
,
2004
, “
Adaptive Tracking Control of Flexible-Joint Manipulators Without Overparametrization
,”
J. Rob. Syst.
,
21
(
7
), pp.
369
379
.10.1002/rob.20019
38.
Li
,
M.
,
Sun
,
L.
,
Zhao
,
W.
, and
Liu
,
J.
,
2019
, “
Robust Control Approach for Novel Stabilized Platform With Series Elastic Actuator
,”
IEEE Workshop on Advanced Robotics and Its Social Impacts
, ARSO, Beijing, China, Oct. 31–Nov. 2, pp.
141
146
.10.1109/ARSO46408.2019.8948830
39.
Yoo
,
J. S.
,
2012
, “
Actuator Fault Detection and Adaptive Accommodation Control of Flexible-Joint Robots
,”
IET Control Theory Appl.
,
6
(
10
), pp.
1497
1507
.10.1049/iet-cta.2011.0508
40.
Wang
,
J.
,
Zhang
,
H.
,
Dong
,
H.
, and
Zhao
,
J.
,
2021
, “
Partial-State Feedback Based Dynamic Surface Motion Control for Series Elastic Actuators
,”
Mech. Syst. Signal Process.
,
160
, p.
107837
.10.1016/j.ymssp.2021.107837
41.
Pan
,
Y.
,
Wang
,
H.
,
Li
,
X.
, and
Yu
,
H.
,
2018
, “
Adaptive Command-Filtered Backstepping Control of Robot Arms With Compliant Actuators
,”
IEEE Trans. Control Syst. Technol.
,
26
(
3
), pp.
1149
8
.10.1109/TCST.2017.2695600
42.
Stansfield
,
B.
,
2004
, “
CGA Normative Gait Database
,” Motion Labs, UK, accessed July 6, 2021, http://www.clinicalgaitanalysis.com/data/index.html
43.
Maryasin
,
L.
,
2014
, “
Female Human Dummy
,” GRABCAD Community, accessed June 24, 2022, https://grabcad.com/library/female-human-dummy-1
44.
Chen
,
G.
,
Qi
,
P.
,
Guo
,
Z.
, and
Yu
,
H.
,
2016
, “
Mechanical Design and Evaluation of a Compact Portable Knee–Ankle–Foot Robot for Gait Rehabilitation
,”
Mech. Mach. Theory
,
103
, pp.
51
64
.10.1016/j.mechmachtheory.2016.04.012
45.
Sun
,
L.
,
Li
,
M.
,
Wang
,
M.
,
Yin
,
W.
,
Sun
,
N.
, and
Liu
,
J.
,
2020
, “
Continuous Finite-Time Output Torque Control Approach for Series Elastic Actuator
,”
Mech. Syst. Signal Process.
,
139
, p.
105853
.10.1016/j.ymssp.2018.12.031
46.
Tan
,
Y.
,
Jie
,
C.
, and
Tan
,
H.
,
2003
, “
Adaptive Backstepping Control and Friction Compensation for AC Servo With Inertia and Load Uncertainties
,”
Ind. Electron. IEEE Trans.
,
50
(
5
), pp.
944
952
.10.1109/T IE.2003.817574
47.
Li
,
X.
,
Xi
,
D.
, and
Zhang
,
Y.
,
2017
, “
Permanent Magnet Synchronous Motor Vector Control Based on MATLAB/Simulink
,” Proceedings of First International Conference on Electronics Instrumentation & Information Systems (
EIIS
), Harbin, China, June 3–5, pp.
1
6
.10.1109/EIIS.2017.8298737
48.
Guangyao
,
Y.
,
2018
, “
Research on Full-Speed Domain Vector Control System of Permanent Magnet Synchronous Motor Without Position Sensor
,” Ph.D. thesis, China University of Mining and Technology, Xuzhou, China.
49.
Talole
,
S. E.
, and
Phadke
,
S. B.
,
2010
, “
Extended-State-Observer-Based Control of Flexible-Joint System With Experimental Validation
,”
Proceedings of IEEE International Symposium on Industrial Electronics
, 57(4), pp. 1411–1419
.10.1109/T IE.2009.2029528
50.
Li
,
T. S.
,
Dan
,
W.
,
Gang
,
F.
, and
Tong
,
S. C.
,
2010
, “
A DSC Approach to Robust Adaptive NN Tracking Control for Strict-Feedback Nonlinear Systems
,”
Syst. Man Cybern. Part B Cybern. IEEE Trans.
,
40
(
3
), pp.
915
927
.10.1109/T SMCB.2009.2033563
51.
Dong
,
W.
,
Farrell
,
J. A.
,
Polycarpou
,
M. M.
,
Djapic
,
V.
, and
Sharma
,
M.
,
2012
, “
Command Filtered Adaptive Backstepping
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
566
580
.10.1109/TCST.2011.2121907
52.
Farrell
,
J. A.
,
Polycarpou
,
M.
,
Sharma
,
M.
, and
Dong
,
W.
,
2009
, “
Command Filtered Backstepping
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1391
1395
.10.1109/TAC.2009.2015562
You do not currently have access to this content.