Abstract

When compared to electrically modulated brakes (EMBs), such as a magnetic particle brake, modern brushless direct current (BLDC) motors have substantially higher power densities, and therefore have become an attractive alternative to EMBs for applications requiring controllable modulated resistance (i.e., torque-controllable braking). Unlike brakes, however, which fundamentally guarantee strict passivity, emulating mechanical resistance with a motor does not guarantee passive behavior. In order to enable the use of a motor as a torque-controllable brake with fundamentally guaranteed passivity, this paper presents a control scheme that provides high-fidelity torque tracking and physically guarantees strictly passive behavior. Specifically, this paper: (1) describes model-based control methods for applications requiring high-fidelity torque control and strictly passive impedance; (2) presents an analysis that characterizes the limits of control and tradeoffs of controllability and energy generation associated with using a motor in this manner; and (3) presents experimental results that validate both the system characterization and control performance for the strictly passive controllable impedance approach.

References

1.
Church, G., 2017, “Innovative Motor Designs for Eelectric Cars Come to Life,” Multiphysics Simulation 2017 (IEEE Spectrum), pp.
10
12
.
2.
Gillespie
,
R. B.
, and
Cutkosky
,
M. R.
,
1996
, “
Stable User-Specific Haptic Rendering of the Virtual Wall
,” Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, Vol. 58, pp. 397–406.
3.
Colgate
,
J. E.
, and
Brown
,
J. M.
,
1994
, “
Factors Affecting the Z-Width of a Haptic Display
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol. 4, San Diego, CA, May 8–13, pp. 3205–3210.10.1109/ROBOT.1994.351077
4.
Lawrence
,
D. A.
,
1988
, “
Impedance Control Stability Properties in Common Implementations
,”
Proceedings IEEE International Conference on Robotics and Automation
, Vol.
2
, Philadelphia, PA, Apr. 24–29, pp.
1185
1190
.
5.
Seth
,
B.
, and
Flowers
,
W. C.
,
1990
, “
Generalized Actuator Concept for the Study of the Efficiency of Energetic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
2
), pp.
233
238
.10.1115/1.2896130
6.
Seth
,
B.
,
1987
, “
Energy Regeneration and Its Application to Active Above-Knee Prostheses
,” Ph. D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
7.
Heinzmann
,
R. K.
,
Seth
,
B.
, and
Turi
,
J.
,
1992
, “
Application of a Generalized Actuator Model to the Study of Energy Regeneration Control Strategies
,”
ASME J. Dyn. Syst. Meas. Control
,
114
(
3
), pp.
462
467
.10.1115/1.2897369
8.
Awad
,
M. I.
,
Dehghani-Sanij
,
A. A.
,
Moser
,
D.
, and
Zahedi
,
S.
,
2016
, “
Motor Electrical Damping for Back-Drivable Prosthetic Knee
,”
2016 11th France-Japan & 9th Europe-Asia Congress on Mechatronics (MECATRONICS)/17th International Conference on Research and Education in Mechatronics
(REM
), Compiegne, France, June 15–17, pp.
348
353
.10.1109/MECATRONICS.2016.7547167
9.
Yuan
,
K.
,
Wang
,
Q.
, and
Wang
,
L.
,
2017
, “
Energy-Efficient Braking Torque Control of Robotic Transtibial Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
149
160
.10.1109/TMECH.2016.2620166
10.
Chen
,
C.
,
Chi
,
W.-C.
, and
Cheng
,
M.
,
2011
, “
Regenerative Braking Control for Light Electric Vehicles
,”
IEEE Ninth International Conference on Power Electronics and Drive Systems
, Singapore, Dec. 5–8, pp.
631
636
.10.1109/PEDS.2011.6147317
11.
Nian
,
X.
,
Peng
,
F.
, and
Zhang
,
H.
,
2014
, “
Regenerative Braking System of Electric Vehicle Driven by Brushless DC Motor
,”
IEEE Trans. Ind. Electron.
,
61
(
10
), pp.
5798
5808
.10.1109/TIE.2014.2300059
12.
Naseri
,
F.
,
Farjah
,
E.
, and
Ghanbari
,
T.
,
2016
, “
An Efficient Regenerative Braking System Based on Battery/Supercapacitor for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles With BLDC Motor
,”
IEEE Trans. Veh. Technol.
,
66
(
5
), pp.
1
3738
.10.1109/TVT.2016.2611655
13.
Joseph Godfrey
,
A.
, and
Sankaranarayanan
,
V.
,
2018
, “
A New Electric Braking System With Energy Regeneration for a BLDC Motor Driven Electric Vehicle
,”
Eng. Sci. Technol. Int. J.
,
21
(
4
), pp.
704
713
.1016/j.jestch.2018.05.003
14.
Saradalekshmi
,
P. R.
, and
Binojkumar
,
A. C.
,
2020
,
Combined Fuzzy and PI Control of Regenerative Braking System of Electric Vehicle Driven by Brushless DC Motor
,
American Institute of Physics Conference Series
, Kollam, India, Sept. 27–28, p.
040005
.
15.
Zhou
,
X.
, and
Fang
,
J.
,
2013
, “
Precise Braking Torque Control for Attitude Control Flywheel With Small Inductance Brushless DC Motor
,”
IEEE Trans. Power Electron.
,
28
(
11
), pp.
5380
5390
.10.1109/TPEL.2013.2244617
16.
Cao
,
Y.
,
Shi
,
T.
,
Niu
,
X.
,
Li
,
X.
, and
Xia
,
C.
,
2018
, “
A Smooth Torque Control Strategy for Brushless DC Motor in Braking Operation
,”
IEEE Trans. Energy Convers.
,
33
(
3
), pp.
1443
1452
.10.1109/TEC.2018.2800750
17.
Cao
,
Y.
,
Shi
,
T.
,
Yan
,
Y.
,
Li
,
X.
, and
Xia
,
C.
,
2020
, “
Braking Torque Control Strategy for Brushless DC Motor With a Noninductive Hybrid Energy Storage Topology
,”
IEEE Trans. Power Electron.
,
35
(
8
), pp.
8417
8428
.10.1109/TPEL.2020.2964434
18.
Naseri
,
F.
,
Farjah
,
E.
,
Schaltz
,
E.
,
Lu
,
K.
, and
Tashakor
,
N.
,
2021
, “
Predictive Control of Low-Cost Three-Phase Four-Switch Inverter-Fed Drives for Brushless DC Motor Applications
,”
IEEE Trans. Circuits Syst. Regul. Pap.
,
68
(
3
), pp.
1308
1318
.10.1109/TCSI.2020.3043468
19.
Tabor
,
K.
,
1984
,
The Real-Time Digital Control of a Regenerative Above-Knee Prosthesis
,
Michigan Technological Institute
, Cambridge, MA.
20.
Andrysek
,
J.
, and
Chau
,
G.
,
2007
, “
An Electromechanical Swing-Phase-Controlled Prosthetic Knee Joint for Conversion of Physiological Energy to Electrical Energy: Feasibility Study
,”
IEEE Trans. Biomed. Eng.
,
54
(
12
), pp.
2276
2283
.10.1109/TBME.2007.908309
21.
Andrysek
,
J.
,
Liang
,
T.
, and
Steinnagel
,
B.
,
2009
, “
Evaluation of a Prosthetic Swing-Phase Controller With Electrical Power Generation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
4
), pp.
390
396
.10.1109/TNSRE.2009.2023292
22.
Tucker
,
M. R.
, and
Fite
,
K. B.
,
2010
, “
Mechanical Damping With Electrical Regeneration for a Powered Transfemoral Prosthesis
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Montreal, Canada, July 6–9, pp.
13
18
.10.1109/AIM.2010.5695828
23.
Mehling
,
J. S.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
,
2005
,
“Increasing the Impedance Range of a Haptic Display by Adding Electrical Damping,” First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference, Pisa, Italy, Mar. 18–20, pp. 257–262.
24.
Srikanth
,
M. B.
,
Vasudevan
,
H.
, and
Muniyandi
,
M.
,
2008
, “
DC Motor Damping: A Strategy to Increase Passive Stiffness of Haptic Devices
,”
Haptics: Perception, Devices and Scenarios
,
M.
Ferre
, ed.,
Springer, Berlin/Heidelberg
, pp.
53
62
.
25.
Maniktala
,
S.
,
2014
, “
Understanding and Using Discontinuous Conduction Mode
,”
Switching Power Supply Design & Optimization
, 2nd ed.,
McGraw-Hill Education
,
New York
.
26.
Hamming
,
R.
,
1986
, “
Newton's Method
,”
Numerical Methods for Scientists and Engineers
, 2nd ed.,
Dover Publications
, NewYork.
27.
Visioli
,
A.
, ed.,
2006
, “
Anti-Windup Strategies
,”
Practical PID Control
,
Springer London
,
UK
, pp.
35
60
.
You do not currently have access to this content.