Abstract

This paper presents a robust, tube-based nonlinear model predictive controller for continuous-time systems with additive disturbances which cascades two sampled-data model predictive controllers: the first creates a desired path using nominal dynamics, and the second maintains the true state close to the nominal state by regulating a sliding variable designed on the error between the true and nominal states. The sampled-data model predictive approach permits easy incorporation of continuous-time sliding mode dynamics, allowing a dynamic boundary layer and tube design to be included. In this way, the control applied to the system capitalizes on the robustness properties of traditional sliding mode control (SMC) while incorporating system constraints. Stability analysis is presented in the context of input-to-state stability (ISS) for continuous-time systems. The proposed controller is implemented on two case studies, is compared to benchmark tube-based model predictive controllers, and is evaluated using average root-mean-square (RMS) values on the state and input variables, in addition to average integral square error (ISE) and integral absolute error (IAE) values on the position states. Results reveal that the proposed technique responds to higher levels of disturbance with significant increases in control effort, eliminates constraint violation by using of constrained SMC as the secondary controller, and maintains similar tracking performance to benchmark controllers at lower levels of control effort.

References

1.
Rawlings
,
J. B.
,
Mayne
,
D. Q.
, and
Diehl
,
M.
,
2017
,
Model Predictive Control: Theory, Computation, and Design
, 2nd ed.,
Nob Hill Publishing
,
Santa Barbara, CA
.
2.
Song
,
S.
, and
Wang
,
J.
,
2020
, “
Incremental Model Predictive Control of Active Suspensions With Estimated Road Preview Information From a Lead Vehicle
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
12
), p.
121004
.10.1115/1.4047962
3.
Yang
,
K.
, and
Chen
,
P.
,
2021
, “
Model-Based Predictive Control and Dithering Control for an Integrated Gasoline Engine and Three-Way Catalytic Converter System
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
9
), p.
091007
.10.1115/1.4050846
4.
Shaltout
,
M. L.
,
Ma
,
Z.
, and
Chen
,
D.
,
2018
, “
An Adaptive Economic Model Predictive Control Approach for Wind Turbines
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
5
), p.
051007
.10.1115/1.4038490
5.
Docimo
,
D. J.
,
Kang
,
Z.
,
James
,
K. A.
, and
Alleyne
,
A. G.
,
2021
, “
Plant and Controller Optimization for Power and Energy Systems With Model Predictive Control
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
8
), p.
081009
.10.1115/1.4050399
6.
Raković
,
S. V.
,
Kouvaritakis
,
B.
,
Findeisen
,
R.
, and
Cannon
,
M.
,
2012
, “
Homothetic Tube Model Predictive Control
,”
Automatica
,
48
(
8
), pp.
1631
1638
.10.1016/j.automatica.2012.05.003
7.
Raković
,
S. V.
,
Levine
,
W. S.
, and
Açikmese
,
B.
,
2016
, “
Elastic Tube Model Predictive Control
,”
Proceedings of IEEE American Control Conference
, Boston, MA, July 6-8, pp.
3594
3599
.10.1109/ACC.2016.7525471
8.
Fontes
,
F.
,
Raković
,
S.
, and
Kolmanovsky
,
I.
,
2017
, “
Rigid Tube Model Predictive Control for Linear Sampled-Data Systems
,”
Proceedings of 20th IFAC World Congress
, Toulouse, France, pp.
9840
9845
.10.1016/j.ifacol.2017.08.903
9.
Dong
,
Z.
, and
Angeli
,
D.
,
2021
, “
Homothetic Tube-Based Robust Economic MPC With Integrated Moving Horizon Estimation
,”
IEEE Trans. Autom. Control
,
66
(
1
), pp.
64
75
.10.1109/TAC.2020.2973606
10.
Mayne
,
D. Q.
, and
Kerrigan
,
E. C.
,
2007
, “
Tube-Based Robust Nonlinear Model Predictive Control
,”
IFAC Proc. Vol.
,
40
(
12
), pp.
36
41
.10.3182/20070822-3-ZA-2920.00006
11.
Nikou
,
A.
, and
Dimarogonas
,
D. V.
,
2019
, “
Decentralized Tube-Based Model Predictive Control of Uncertain Nonlinear Multiagent Systems
,”
Int. J. Robust Nonlinear Control
,
29
(
10
), pp.
2799
2818
.10.1002/rnc.4522
12.
Yan
,
H.
, and
Duan
,
Z.
,
2020
, “
Tube-Based Model Predictive Control Using Multi-Dimensional Taylor Network for Nonlinear Time-Delay Systems
,”
IEEE Trans. Autom. Control
,
66
(
5
), pp.
2099
2114
.10.1109/TAC.2020.3005674
13.
Köhler
,
J.
,
Soloperto
,
R.
,
Müller
,
M. A.
, and
Allgöwer
,
F.
,
2021
, “
A Computationally Efficient Robust Model Predictive Control Framework for Uncertain Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
66
(
2
), pp.
794
801
.10.1109/TAC.2020.2982585
14.
Fesharaki
,
S. J.
,
Kamali
,
M.
,
Sheikholeslam
,
F.
, and
Talebi
,
H. A.
,
2020
, “
Robust Model Predictive Control With Sliding Mode for Constrained Non-Linear Systems
,”
IET Control Theory Appl.
,
14
(
17
), pp.
2592
2599
.10.1049/iet-cta.2019.1357
15.
Rubagotti
,
M.
,
Raimondo
,
D. M.
,
Ferrara
,
A.
, and
Magni
,
L.
,
2011
, “
Robust Model Predictive Control With Integral Sliding Mode in Continuous-Time Sampled-Data Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
56
(
3
), pp.
556
570
.10.1109/TAC.2010.2074590
16.
Incremona
,
G. P.
,
Ferrara
,
A.
, and
Magni
,
L.
,
2017
, “
Asynchronous Networked MPC With ISM for Uncertain Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
62
(
9
), pp.
4305
4317
.10.1109/TAC.2017.2653760
17.
Incremona
,
G. P.
,
Ferrara
,
A.
, and
Magni
,
L.
,
2017
, “
MPC for Robot Manipulators With Integral Sliding Modes Generation
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1299
1307
.10.1109/TMECH.2017.2674701
18.
Incremona
,
G. P.
,
Ferrara
,
A.
, and
Magni
,
L.
,
2015
, “
Hierarchical Model Predictive/Sliding Mode Control of Nonlinear Constrained Uncertain Systems
,”
Proceedings of Fifth IFAC Conference on Nonlinear Model Predictive Control
, Seville, Spain , pp.
102
109
.10.1016/j.ifacol.2015.11.268
19.
Lopez
,
B. T.
,
Slotine
,
J. E.
, and
How
,
J. P.
,
2019
, “
Dynamic Tube MPC for Nonlinear Systems
,”
Proceedings of IEEE American Control Conference
, Philadelphia, PA, July 10–12, pp.
1655
1662
.10.23919/ACC.2019.8814758
20.
Incremona
,
G. P.
,
Rubagotti
,
M.
, and
Ferrara
,
A.
,
2017
, “
Sliding Mode Control of Constrained Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
62
(
6
), pp.
2965
2972
.10.1109/TAC.2016.2605043
21.
Garcia-Gabin
,
W.
,
Zambrano
,
D.
, and
Camacho
,
E. F.
,
2009
, “
Sliding Mode Predictive Control of a Solar Air Conditioning Plant
,”
Control Eng. Pract.
,
17
(
6
), pp.
652
663
.10.1016/j.conengprac.2008.10.015
22.
Hansen
,
A.
, and
Hedrick
,
J. K.
,
2015
, “
Receding Horizon Sliding Control for Linear and Nonlinear Systems
,”
Proceedings of IEEE American Control Conference
, Chicago, IL, July 1–3, pp.
1629
1634
.10.1109/ACC.2015.7170966
23.
Rubagotti
,
M.
,
Incremona
,
G. P.
,
Raimondo
,
D. M.
, and
Ferrara
,
A.
,
2021
, “
Constrained Nonlinear Discrete-Time Sliding Mode Control Based on a Receding Horizon Approach
,”
IEEE Trans. Autom. Control
,
66
(
8
), pp.
3802
3809
.10.1109/TAC.2020.3024349
24.
Liao
,
Y.
, and
Hedrick
,
J. K.
,
2015
, “
Robust Model Predictive Control With Discrete-Time Integral Sliding Surface
,”
Proceedings of IEEE American Control Conference
, Chicago, IL, July 1–3, pp.
1641
1646
.10.1109/ACC.2015.7170968
25.
Fontes
,
F. A.
,
2001
, “
A General Framework to Design Stabilizing Nonlinear Model Predictive Controllers
,”
Syst. Control Lett.
,
42
(
2
), pp.
127
143
.10.1016/S0167-6911(00)00084-0
26.
Findeisen
,
R.
,
Raff
,
T.
, and
Allgöwer
,
F.
,
2007
, “
Sampled-Data Nonlinear Model Predictive Control for Constrained Continuous Time Systems
,” Advanced Strategies in Control Systems with Input and Output Constraints (Lecture Notes in Control and Information Sciences, Vol. 346), Springer, Berlin, pp.
207
235
.
27.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
28.
Magni
,
L.
,
Raimondo
,
D.
, and
Allgower
,
F.
, eds.,
2009
,
Nonlinear Model Predictive Control: Towards New Challenging Applications
(Lecture Notes in Control and Information Sciences, Vol.
386
),
Springer-Verlag
,
Chennai, India
, pp.
1
26
.
29.
Landis Markley
,
F.
, and
Crassidis
,
J. L.
,
2014
,
Space Technology Library Fundamentals of Spacecraft Attitude Determination and Control
,
Springer
,
New York
.
30.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi—A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Program. Comput.
,
11
(
1
), pp.
1
36
.10.1007/s12532-018-0139-4
You do not currently have access to this content.