Abstract

Vehicle tire traction torque, heavily dependent on vehicle speed and tire stiffness, is critical for improving vehicle traction performance. However, due to the limitation of existing technology and sensor cost, it becomes rather expensive to accurately measure the vehicle tire traction torque and/or other vehicle variables directly. This paper proposes to estimate the tire traction torque by estimating vehicle speed (vehicle state) and tire stiffness simultaneously based on a few available low-cost measurements from any production vehicle. Specifically, the tire and full vehicle dynamics are considered to form a unified traction torque estimation model under various vehicle operational conditions. Estimation of vehicle speed and tire stiffness is formulated into a dual-estimation problem of system states and parameters. A recursive real-time implementable solution for the dual-estimation problem is realized with the help of dual extended Kalman filter (DEKF) algorithm. The effectiveness of the proposed algorithm under different vehicle operating conditions is validated by comparing the estimated results with directly measured ones as well as those from existing estimation approaches. It is found that for a 4-wheel driving vehicle, under clutch overtaken condition, for the best case, the absolute mean square error (ASME) improves by around 20 Nm, and the relative mean square error (RMSE) reduces 12%; and under clutch slip condition, the absolute mean square error improves by around 40 Nm, and the RMSE reduces 6%.

References

1.
Li
,
R. C.
, and
Zhu
,
G. G.
,
2021
, “
A Real-Time Pressure Wave Model for Knock Prediction and Control
,”
Int. J. Engine Res.
,
22
(
3
), pp.
986
1000
.10.1177/1468087419869161
2.
Yang
,
J.
, and
Zhu
,
G. G.
,
2016
, “
Model Predictive Control of a Power Split Hybrid Powertrain
,” 2016 American Control Conference (
ACC
), Boston, MA,
IEEE
, July 6–8, pp.
617
622
.https://www.egr.msu.edu/zhug/Publications/Conference%20Articles/Model%20predictive%20control%20of%20a%20hybrid%20powertrain.pdf
3.
Bimbraw
,
K.
,
2015
, “
Autonomous Cars: Past, Present and Future a Review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology
,” 2015 12th International Conference on Informatics in Control, Automation and Robotics (
ICINCO
), Colmar, France, July 21–23, Vol.
1
, pp.
191
198
.10.5220/0005540501910198
4.
Wei
,
W.
,
Dourra
,
H.
, and
Zhu
,
G. G.
,
2020
, “
Deadbeat Adaptive Backstepping Design for Tracking Transfer Case Torque and Estimating Its Clutch Touchpoint
,”
2020 IEEE Conference on Control Technology and Applications
, IEEE, Montreal, Canada, Aug. 24–26, pp.
188
193
.10.1109/CCTA41146.2020.9206164
5.
Wei
,
W.
,
Dourra
,
H.
, and
Zhu
,
G. G.
,
2020
, “
Adaptive Transfer Case Clutch Touchpoint Estimation With a Modified Friction Model
,”
IEEE/ASME Trans. Mechatronics
,
25
(
4
), pp.
2000
2008
.10.1109/TMECH.2020.2993282
6.
Wei
,
W.
,
Dourra
,
H.
, and
Zhu
,
G.
,
2021
, “
Integrated Clutch Torque Control and Touchpoint Estimation Using Deadbeat Adaptive Backstepping
,”
IEEE Trans. Control Syst. Technol.
, pp.
1
8
.
7.
Liu
,
H.
,
Miao
,
C.
, and
Zhu
,
G. G.
,
2020
, “
Economic Adaptive Cruise Control for a Power Split Hybrid Electric Vehicle
,”
IEEE Trans. Intell. Transportation Syst.
,
21
(
10
), pp.
4161
4170
.10.1109/TITS.2019.2938923
8.
Jalali
,
M.
,
Khajepour
,
A.
,
Chen
,
S.-K.
, and
Litkouhi
,
B.
,
2016
, “
Integrated Stability and Traction Control for Electric Vehicles Using Model Predictive Control
,”
Control Eng. Pract.
,
54
, pp.
256
266
.10.1016/j.conengprac.2016.06.005
9.
Wei
,
W.
,
Dourra
,
H.
, and
Zhu
,
G.
,
2022
, “
Slip-Clutch Torque Estimation Via Real-Time Adaptive Lookup Table
,”
ASME Lett. Dyn. Syst. Control
,
2
(
2
), p.
021003
.10.1115/1.4052462
10.
Wei
,
W.
,
Dourra
,
H.
, and
Zhu
,
G.
, “
Transfer Case Clutch Torque Estimation Using an Extended Kalman Filter With Unknown Input
,”
IEEE/ASME Trans. Mechatronics
, pp.
1
9
.10.1109/TMECH.2021.3117128
11.
Guo
,
H.
,
Cao
,
D.
,
Chen
,
H.
,
Lv
,
C.
,
Wang
,
H.
, and
Yang
,
S.
,
2018
, “
Vehicle Dynamic State Estimation: State of the Art Schemes and Perspectives
,”
IEEE/CAA J. Automatica Sin.
,
5
(
2
), pp.
418
431
.10.1109/JAS.2017.7510811
12.
Zhao
,
L.-H.
,
Liu
,
Z.-Y.
, and
Chen
,
H.
,
2011
, “
Design of a Nonlinear Observer for Vehicle Velocity Estimation and Experiments
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
664
672
.10.1109/TCST.2010.2043104
13.
Ding
,
X.
,
Wang
,
Z.
,
Zhang
,
L.
, and
Wang
,
C.
,
2020
, “
Longitudinal Vehicle Speed Estimation for Fourwheel-Independently-Actuated Electric Vehicles Based on Multi-Sensor Fusion
,”
IEEE Trans. Veh. Technol.
,
69
(
11
), pp.
12797
12806
.10.1109/TVT.2020.3026106
14.
Ren
,
H.
,
Chen
,
S.
,
Liu
,
G.
, and
Zheng
,
K.
,
2014
, “
Vehicle State Information Estimation With the Unscented Kalman Filter
,”
Adv. Mech. Eng.
,
6
, p.
589397
.10.1155/2014/589397
15.
Boufadene
,
M.
,
Rabhi
,
A.
,
Belkheiri
,
M.
, and
Elhajjaji
,
A.
,
2016
, “
Vehicle Online Parameter Estimation Using a Nonlinear Adaptive Observer
,” 2016 American Control Conference (
ACC
), Boston, July 6–8, pp.
1006
1010
.10.1109/ACC.2016.7525046
16.
Carlson
,
C. R.
, and
Gerdes
,
J. C.
,
2005
, “
Consistent Nonlinear Estimation of Longitudinal Tire Stiffness and Effective Radius
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
1010
1020
.10.1109/TCST.2005.857408
17.
Berntorp
,
K.
, and
Di Cairano
,
S.
,
2019
, “
Tirestiffness and Vehicle-State Estimation Based on Noiseadaptive Particle Filtering
,”
IEEE Trans. Control Syst. Technol.
,
27
(
3
), pp.
1100
1114
.10.1109/TCST.2018.2790397
18.
Han
,
K.
,
Lee
,
E.
,
Choi
,
M.
, and
Choi
,
S. B.
,
2017
, “
Adaptive Scheme for the Real-Time Estimation of Tire-Road Friction Coefficient and Vehicle Velocity
,”
IEEE/ASME Trans. Mechatronics
,
22
(
4
), pp.
1508
1518
.10.1109/TMECH.2017.2704606
19.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of Lipb-Based Hev Battery Packs: Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
.10.1016/j.jpowsour.2004.02.033
20.
Wassiliadis
,
N.
,
Adermann
,
J.
,
Frericks
,
A.
,
Pak
,
M.
,
Reiter
,
C.
,
Lohmann
,
B.
, and
Lienkamp
,
M.
,
2018
, “
Revisiting the Dual Extended Kalman Filter for Battery State-of-Charge and State-of-Health Estimation: A Usecase Life Cycle Analysis
,”
J. Energy Storage
,
19
, pp.
73
87
.10.1016/j.est.2018.07.006
21.
Campestrini
,
C.
,
Heil
,
T.
,
Kosch
,
S.
, and
Jossen
,
A.
,
2016
, “
A Comparative Study and Review of Different Kalman Filters by Applying an Enhanced Validation Method
,”
J. Energy Storage
,
8
, pp.
142
159
.10.1016/j.est.2016.10.004
22.
Hou
,
J.
,
Yang
,
Y.
,
He
,
H.
, and
Gao
,
T.
,
2019
, “
Adaptive Dual Extended Kalman Filter Based on Variational Bayesian Approximation for Joint Estimation of Lithium-Ion Battery State of Charge and Model Parameters
,”
Appl. Sci.
,
9
(
9
), p.
1726
.10.3390/app9091726
23.
Nejad
,
S.
,
Gladwin
,
D. T.
, and
Stone
,
D. A.
,
2016
, “
On-Chip Implementation of Extended Kalman Filter for Adaptive Battery States Monitoring
,”
IECON 2016 42nd Annual Conference of the IEEE Industrial Electronics Society
, Italy, Florence, Oct. 23–26, pp.
5513
5518
.10.1109/IECON.2016.7793527
24.
Khodadadi
,
H.
, and
Jazayeri-Rad
,
H.
,
2011
, “
Applying a Dual Extended Kalman Filter for the Nonlinear State and Parameter Estimations of a Continuous Stirred Tank Reactor
,”
Comput. Chem. Eng.
,
35
(
11
), pp.
2426
2436
.10.1016/j.compchemeng.2010.12.010
25.
Popovici
,
A.
,
Zaal
,
P.
, and
Pool
,
D. M.
,
2017
, “
Dual Extended Kalman Filter for the Identification of Timevarying Human Manual Control Behavior
,”
AIAA
Paper No. 2017–3666.10.2514/6.2017-3666
26.
Sen
,
S.
, and
Bhattacharya
,
B.
,
2017
, “
Online Structural Damage Identification Technique Using Constrained Dual Extended Kalman Filter
,”
Struct. Control Health Monit.
,
24
(
9
), p.
e1961
.10.1002/stc.1961
27.
Zong
,
C.
,
Hu
,
D.
, and
Zheng
,
H.
,
2013
, “
Dual Extended Kalman Filter for Combined Estimation of Vehicle State and Road Friction
,”
Chin. J. Mech. Eng.
,
26
(
2
), pp.
313
324
.10.3901/CJME.2013.02.313
28.
Wenzel
,
T. A.
,
Burnham
,
K. J.
,
Blundell
,
M. V.
, and
Williams
,
R. A.
,
2006
, “
Dual Extended Kalman Filter for Vehicle State and Parameter Estimation
,”
Veh. Syst. Dyn.
,
44
(
2
), pp.
153
171
.10.1080/00423110500385949
29.
Li
,
L.
,
Song
,
J.
,
Li
,
H.
,
Shan
,
D.
,
Kong
,
L.
, and
Yang
,
C.
,
2009
, “
Comprehensive Prediction Method of Road Friction for Vehicle Dynamics Control
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
223
(
8
), pp.
987
1002
.10.1243/09544070JAUTO1168
30.
Wei
,
W.
, Dourra, H., and
Zhu
,
G.
,
2021
, “
Transfer Case Clutch Torque Modeling and Validation Under Slip and Overtaken Conditions
,”
ASME J. Dyn. Sys. Meas. Control.
,
143
(
7
), p.
071003
.10.1115/1.4049543
31.
Haykin
,
S.
,
2004
,
Kalman Filtering and Neural Networks
,
47
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.