Abstract

This paper presents the formulation of a variable load sense control strategy suitable to achieve power savings in hydraulic systems using postcompensated load sensing (LS) hydraulic control architectures. Such architecture is typical in off-road construction machinery. The paper also describes the application of the proposed control strategy referred to as variable load sensing margin (VLM) on a full-size wheel loader. The paper first presents the rationale for the proposed strategy, showing how the state-of-the-art LS architecture present in commercial machines has a margin for lowering the throttling losses present at the control valves. A feedforward controller, derived from an empirical study on a reference vehicle, is used to control the flow to the front-end loader functions. Test results show improvements of the hydraulic power consumption up to 45%, based on the commanded speed of each front-end loader actuator. The paper also describes a gain scheduling pressure feedback control strategy, which is used to allow controlling also functions that include priority. For the case of off-road vehicles, this is typically the steering function. The experimental results show good performances with an error in controlled velocity below 5%, which is achieved when the front-end loader functions are used concurrently with the steering.

References

1.
Padovani
,
D.
,
Rundo
,
M.
, and
Altare
,
G.
,
2020
, “
The Working Hydraulics of Valve-Controlled Mobile Machines: Classification and Review
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
7
), p. 070801.10.1115/1.4046334
2.
Pedersen
,
H. C.
,
Andersen
,
T. O.
, and
Hansen
,
M. R.
,
2019
, “
Load Sensing Systems – A Review of the Research Contributions Throughout the Last Decades
,”
Fourth International Fluid Power Conference
, Dresden, Germany, pp.
125
139
, Paper No. IFK 2004.https://www.researchgate.net/publication/262003170_Load_Sensing_Systems_-_A_Review_of_the_Research_Contributions_Throughout_the_Last_Decades
3.
Vukovic
,
M.
,
Leifeld
,
R.
, and
Murrenhoff
,
H.
,
2017
, “
Reducing Fuel Consumption in Hydraulic Excavators-a Comprehensive Analysis
,”
Energies
,
10
(
5
), p.
687
.10.3390/en10050687
4.
Axin
,
M.
,
Eriksson
,
B.
, and
Krus
,
P.
,
2014
, “
Flow Versus Pressure Control of Pumps in Mobile Hydraulic Systems
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
228
(
4
), pp.
245
256
.10.1177/0959651813512820
5.
Cheng
,
M.
,
Xu
,
B.
,
Zhang
,
J.
, and
Ding
,
R.
,
2017
, “
Pump-Based Compensation for Dynamic Improvement of the Electrohydraulic Flow Matching System
,”
IEEE Trans. Ind. Electron.
,
64
(
4
), pp.
2903
2913
.10.1109/TIE.2016.2633478
6.
Cheng
,
M.
,
Zhang
,
J.
,
Xu
,
B.
,
Ding
,
R.
, and
Wei
,
J.
,
2018
, “
Decoupling Compensation for Damping Improvement of the Electrohydraulic Control System With Multiple Actuators
,”
IEEE/ASME Trans. Mechatronics
,
23
(
3
), pp.
1383
1392
.10.1109/TMECH.2018.2834936
7.
Jackson
,
R.
,
Clanton
,
R. R.
,
Falls
,
M.
, and
Joseph
,
L.
,
2006
, “
Hydraulic Control Valve System With Electronic Load Sense Control
,” U.S. Patent No. US7089733B1.
8.
Lingenfelter
,
K.
,
Bruns
,
A.
,
Daley
,
C.
, and
Ewald
,
V.
,
2017
, “
Electronic Load Sense Control With Electronic Variable Load Sense Relief, Variable Working Margin, and Electronic Torque Limiting
,” U.S. Patent No. 9759212 B2.
9.
Rexroth
,
B.
,
2020
, “
Axial Piston Variable Pump A10VO
,” Bosch Rexroth AG, Lohr am Main, Germany, accessed Oct. 10, 2021, https://www.boschrexroth.com/documents/12605/25209043/re92703_2020-12-07.pdf/4c5acf7f-b33d-9852-4951-9ca92304aaef?version=2.0
10.
Hannifin
,
P.
,
2021
, “
P1/PD Series Medium Pressure Axial Piston Pumps
,” Parker Hannifin Corporation, Industrial Pkwy Marysville, OH, accessed Oct. 10, 2021, https://www.parker.com/Literature/Hydraulic Pump Division/P1 - PD Files/P1PD Medium Pressure Axial Piston Pumps-HY28-2665-01_P1_EN.pdf
11.
BackèZähe
,
B.
,
1991
, “
Electrohydraulic Load-Sensing
,” SAE Paper No. 911814.
12.
Lovrec
,
D.
,
Detiček
,
E.
, and
Faber
,
F.
,
2009
, “
Electro Hydraulic Load-Sensing With Closed-Loop Controlled Actuators - Theoretical Background
,”
Adv. Prod. Eng. Manage.
,
4
(
3
), pp.
93
104
.https://apem-journal.org/Archives/2009/APEM4-3_093-104.pdf
13.
Hansen
,
M. R.
,
Andersen
,
T. O.
,
Pedersen
,
H. C.
, and
Conrad
,
F.
,
2006
, “
Feasibility Study of Electronic Load Sensing Concept for Hydraulic Variable Displacement Pump
,”
Proceedings of the Seventh International Conference in Education and Mechatronics
, Stockholm, Sweden, June
15
16
.https://www.researchgate.net/publication/262003162_Feasibility_Study_of_Electronic_Load_Sensing_Concept_for_Hydraulic_Variable_Displacement_Pump
14.
Hansen
,
R. H.
,
2009
, “
Advanced Power Management of a Telehandler Using Electronic Load Sensing
,”
Proceedings of the 10th International Workshop on Research and Education in Mechatronics
, University of Strathclyde, Glasgow, UK, Sept.
10
11
.https://www.semanticscholar.org/paper/Advanced-Power-Management-of-a-Telehandler-using-Hansen/dc88f4db7b690cdd7316402534f2d9369f2be765
15.
Borghi
,
M.
,
Zardin
,
B.
,
Pintore
,
F.
, and
Belluzzi
,
F.
,
2014
, “
Energy Savings in the Hydraulic Circuit of Agricultural Tractors
,”
Energy Procedia
,
45
, pp.
352
361
.10.1016/j.egypro.2014.01.038
16.
Pintore
,
F.
,
Borghi
,
M.
,
Morselli
,
R.
,
Zardin
,
B.
, and
Belluzzi
,
F.
,
2014
, “
Modelling and Simulation of the Hydraulic Circuit of an Agricultural Tractor
,”
Proceeding of the Eighth FPNI Ph.D Symposium of Fluid Power
, Lappeenranta, Finland, June 11–13, Paper No. FPNI2014-7848.10.1115/FPNI2014-7848
17.
Ruggeri
,
M.
, and
Guidetti
,
M.
,
2008
, “
Variable Load Sensing and Anti-Stall Electronic Control With Sliding Mode and Adaptive PID
,”
Proceedings of the JFPS International Symposium on Fluid Power
, Vol.
2008
, no.
7–2
, Toyama, Japan, Sept. 15–18, pp.
301
306
.10.5739/isfp.2008.301
18.
Lovrec
,
D.
,
Kastrevc
,
M.
, and
Ulaga
,
S.
,
2009
, “
Electro-Hydraulic Load Sensing With a Speed-Controlled Hydraulic Supply System on Forming-Machines
,”
Int. J. Adv. Manuf. Technol.
,
41
(
11–12
), pp.
1066
1075
.10.1007/s00170-008-1553-y
19.
Lettini
,
A.
,
Havermann
,
M.
,
Guidetti
,
M.
, and
Fornaciari
,
A.
,
2010
, “
Improved Functionalities and Energy Saving Potential on Mobile Machines Combining Electronics With Flow Sharing Valve and Variable Displacement Pump
,”
Seventh International Fluid Power Conference
, Aachen, Germany, Mar. 22–24, pp.
1
12
.https://www.researchgate.net/publication/347436925_Improved_Functionalities_and_Energy_Saving_Potential_on_Mobile_Machines_Combining_Electronics_with_Flow_Sharing_Valve_and_Variable_Displacement_Pump
20.
Grösbrink
,
B.
, and
Harms
,
H.-H.
,
2009
, “
A New Approach to an Energy Saving Hydraulic System for Mobile Machines
,”
11th Scandinavian International Conference on Fluid Power
, Linköping, Sweden, June
2
4
.
21.
Latour
,
C.
,
2006
, “
Electrohydraulic Flow Matching (EFM)–the Next Generation of Load Sensing Controls
,”
Bosch Rexroth AG, Mobile Conference
, Ulm, Oct.
19
20
.
22.
Mettälä
,
K.
,
Djurovic
,
M.
,
Keuper
,
G.
, and
Stachnik
,
P.
,
2007
, “
Intelligent Oil Flow Management With EFM: The Potentials of Electrohydraulic Flow Matching in Tractor Hydraulics
,”
The Tenth Scandinavian International Conference on Fluid Power (SICFP)
, Vol.
3
, Tampere, Finland, May 21–23, pp.
25
34
.
23.
Finzel
,
R.
, and
Helduser
,
S.
,
2008
, “
Energy-Efficient Electro-Hydraulic Control Systems for Mobile Machinery/Flow Matching
,”
Sixth IFK International Fluid Power Conference
, Dresden, Germany, Mar. 31–Apr. 2, pp.
89
102
.
24.
Djurovic
,
M.
, and
Helduser
,
S.
,
2004
, “
New Control Strategies for Electrohydraulic Load-Sensing
,” Power Transmission Motion Control (PTMC), Bath, UK, Sept. 6–9, pp.
201
210
.
25.
Cheng
,
M.
,
Zhang
,
J.
,
Xu
,
B.
, and
Ding
,
R.
,
2020
, “
An Electrohydraulic Load Sensing System Based on Flow/Pressure Switched Control for Mobile Machinery
,”
ISA Trans.
,
96
, pp.
367
375
.10.1016/j.isatra.2019.06.018
26.
Xu
,
B.
,
Cheng
,
M.
,
Yang
,
H.
,
Zhang
,
J.
, and
Sun
,
C.
,
2015
, “
A Hybrid Displacement/Pressure Control Scheme for an Electrohydraulic Flow Matching System
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
2771
2782
.10.1109/TMECH.2015.2411315
27.
Axin
,
M.
,
Eriksson
,
B.
, and
Krus
,
P.
,
2016
, “
A Flexible Working Hydraulic System for Mobile Machines
,”
Int. J. Fluid Power
,
17
(
2
), pp.
79
89
.10.1080/14399776.2016.1141635
28.
Axin
,
M.
,
Eriksson
,
B.
, and
Palmberg
,
J. O.
,
2009
, “
Energy Efficient Load Adapting System Without Load Sensing: Design and Evaluation
,”
The 11th Scandinavian International Conference on Fluid Power
, Linköping, Sweden, June 2–4, pp.
58
59
.https://www.researchgate.net/publication/230735062_Energy_Efficient_Load_Adapting_System_without_Load_Sensing_-_Design_and_Evaluation
29.
Scherer
,
M.
,
Geimer
,
M.
, and
Weiss
,
B.
,
2013
, “
Contribution on Control Strategies of Flow-on-Demand Hydraulic Circuits
,”
Proceedings from the 13th Scandinavian International Conference on Fluid Power
, Vol.
92
, June 3–5, Linköping, Sweden, pp.
531
540
.10.3384/ecp1392a53
30.
Axin
,
M.
, and
Krus
,
P.
,
2013
, “
Design Rules for High Damping in Mobile Hydraulic Systems
,”
Proceedings from the 13th Scandinavian International Conference on Fluid Power
, Vol.
92
, Linköping, Sweden, June 3–5, pp.
13
20
.10.3384/ecp1392a2
31.
Luo
,
S.
,
Cheng
,
M.
,
Xu
,
B.
,
Ding
,
R.
, and
Han
,
Z.
,
2019
, “
Dynamic Analysis and Improvement of the Electrohydraulic System Under Power Limitation Control
,”
IEEE Access
,
7
, pp.
137173
137183
.10.1109/ACCESS.2019.2929361
32.
Hansen
,
R. H.
,
Andersen
,
T. O.
, and
Pedersen
,
H. C.
,
2010
, “
Development and Implementation of an Advanced Power Management Algorithm for Electronic Load Sensing on a Telehandler
,”
Proceedings of Bath/ASME Symposium Fluid Power Motion Control
, Bath, UK, Sept. 15–17, pp.
537
550
.
You do not currently have access to this content.