Abstract

This paper presents a geometric adaptive position tracking control system for a quadrotor unmanned aerial vehicle. In particular, the attitude control system is designed on the product of the two-dimensional unit sphere and the one-dimensional circle such that the direction of the thrust that is critical for position tracking is controlled independently from the yawing direction that is irrelevant to the position dynamics. Compared against the prior work with coupled attitude controls on the special orthogonal group, the proposed controller prevents large yaw errors from causing an undesirable performance degradation in tracking a position command. Further, the control input is augmented with adaptive control terms to mitigate the effects of disturbances, and it is formulated globally on the spheres to avoid singularities and complexities of local coordinates. The efficacy of the proposed control system is illustrated by both numerical examples and indoor/outdoor flight experiments.

References

1.
Trujillo
,
J.-C.
,
Munguia
,
R.
,
Urzua
,
S.
,
Guerra
,
E.
, and
Grau
,
A.
,
2020
, “
Monocular Visual SLAM Based on a Cooperative UAV–Target System
,”
Sensors
,
20
(
12
), p.
3531
.10.3390/s20123531
2.
Kaufman
,
E.
,
Takami
,
K.
, and
Lee
,
T.
,
2018
, “
Autonomous Quadrotor 3d Mapping and Exploration Using Exact Occupancy Probabilities
,”
Proceedings of the IEEE International Conference on Robotic Computing
, Laguna Hills, CA, Jan. 31–Feb. 2, pp.
49
55
.10.1109/IRC.2018.00016
3.
Yu
,
B.
,
Gamagedara
,
K.
,
Kim
,
S.
,
Lee
,
T.
, and
Suk
,
J.
,
2020
, “
Geometric Control and Experimental Validation for a Quadrotor UAV Transporting a Payload
,” 2020 59th IEEE Conference on Decision and Control (
CDC
),
IEEE
, Jeju, Korea (South), Dec. 14–18, pp. 201–207. 10.1109/CDC42340.2020.9303889
4.
Cotsakis
,
R.
,
St-Onge
,
D.
, and
Beltrame
,
G.
,
2019
, “
Decentralized Collaborative Transport of Fabrics Using micro-UAVs
,” 2019 International Conference on Robotics and Automation (
ICRA
),
IEEE
, Montreal, QC, May 20–24, pp. 7734–7740.10.1109/ICRA.2019.8793778
5.
Youn
,
W.
,
Ko
,
H.
,
Choi
,
H.
,
Choi
,
I.
,
Baek
,
J.-H.
, and
Myung
,
H.
,
2021
, “
Collision-Free Autonomous Navigation of a Small UAV Using Low-Cost Sensors in GPS-Denied Environments
,”
Int. J. Control Autom. Syst.
,
19
(
2
), pp.
953
968
.10.1007/s12555-019-0797-7
6.
Falanga
,
D.
,
Zanchettin
,
A.
,
Simovic
,
A.
,
Delmerico
,
J.
, and
Scaramuzza
,
D.
,
2017
, “
Vision-Based Autonomous Quadrotor Landing on a Moving Platform
,” 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (
SSRR
),
IEEE
, Shanghai, China, Oct. 11–13, pp. 200–207.10.1109/SSRR.2017.8088164
7.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N.
,
2010
, “
Geometric Tracking Control of a Quadrotor UAV on SE(3)
,”
Proceedings of the IEEE Conference on Decision and Control
, Atlanta, GA, Dec. 15–17, pp.
5420
5425
.10.1109/CDC.2010.5717652
8.
Brescianini
,
D.
, and
D'Andrea
,
R.
,
2018
, “
Tilt-Prioritized Quadrocopter Attitude Control
,”
IEEE Trans. Control Syst. Technol.
,
28
, pp.
1
12
.https://www.flyingmachinearena.ethz.ch/wp-content/publications/2018/breT CST18.pdf
9.
Mueller
,
M. W.
,
2018
, “
Multicopter Attitude Control for Recovery From Large Disturbances
,” arXiv:1802.09143.
10.
Kooijman
,
D.
,
Schoellig
,
A. P.
, and
Antunes
,
D. J.
,
2019
, “Trajectory Tracking for Quadrotors With Attitude Control on S 2 × S 1,” 18th European Control Conference (
ECC
), Naples, Italy, pp.
4002
4009
.10.23919/ECC.2019.8795755
11.
Miranda-Colorado
,
R.
, and
Aguilar
,
L. T.
,
2020
, “
Robust PID Control of Quadrotors With Power Reduction Analysis
,”
ISA Trans.
,
98
, pp.
47
62
.10.1016/j.isatra.2019.08.045
12.
Dydek
,
Z. T.
,
Annaswamy
,
A. M.
, and
Lavretsky
,
E.
,
2013
, “
Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations
,”
IEEE Trans. Control Syst. Technol.
,
21
(
4
), pp.
1400
1406
.10.1109/TCST.2012.2200104
13.
Bisheban
,
M.
, and
Lee
,
T.
,
2020
, “
Geometric Adaptive Control With Neural Networks for a Quadrotor in Wind Fields
,”
IEEE Trans. Control Syst. Technol
.,
29
, pp. 1533–1548.10.1109/TCST.2020.3006184
14.
Goodarzi
,
F.
,
Lee
,
D.
, and
Lee
,
T.
,
2015
, “
Geometric Adaptive Tracking Control of a Quadrotor Unmanned Aerial Vehicle on SE(3)
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
9
), p. 091007. 10.1115/1.4030419
15.
Zhu
,
B.
,
Chen
,
M.
, and
Li
,
T.
,
2020
, “
Robust Constrained Trajectory Tracking Control for Quadrotor Unmanned Aerial Vehicle Based on Disturbance Observers
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
11
), p.
111002
.10.1115/1.4047692
16.
Gamagedara
,
K.
,
Bisheban
,
M.
,
Kaufman
,
E.
, and
Lee
,
T.
,
2019
, “
Geometric Controls of a Quadrotor UAV With Decoupled Yaw Control
,” 2019 American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
3285
3290
.10.23919/ACC.2019.8815189
17.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N.
,
2013
, “
Nonlinear Robust Tracking Control of a Quadrotor UAV on SE(3)
,”
Asian J. Control
,
15
(
2
), pp.
391
408
.10.1002/asjc.567
18.
Wu
,
T.
,
2012
, “
Spacecraft Relative Attitude Formation Tracking on SO(3) Based on Line-of-Sight Measurements
,” Master's thesis,
The George Washington University
,
Washington, DC
.
You do not currently have access to this content.