Abstract

In the context of intelligent transportation system and advanced vehicle control system, higher requirements for intelligent control and coordinated control of heavy vehicles (HVs) have been proposed. Automatic path tracking control is essential for automatic driving of heavy vehicles. However, uncertain lateral disturbances and time-varying characteristics of system parameters make it difficult to guarantee roll stability and path tracking accuracy during automatic path tracking. This paper investigates the coordination of active front steering (AFS) and direct yaw moment control (DYC) in the automatic path tracking system for intelligent heavy vehicles. The main idea is to adjust the braking action according to the rollover risk evaluated by a specific rollover index (RI). The coordination of steering and braking systems and the robustness of the system against time-varying parameters are achieved by a gain-scheduled linear parameter varying (LPV) controller. Based on the linear matrix inequality (LMI) framework, the LPV controller is synthesized to ensure the robust H performance against external disturbances. Simulation results show that the proposed gain-scheduled LPV/H control strategy can enhance roll stability and path tracking accuracy in the path tracking process of intelligent heavy vehicles.

References

1.
Trigell
,
A. S.
,
Rothhämel
,
M.
,
Pauwelussen
,
J.
, and
Kural
,
K.
,
2017
, “
Advanced Vehicle Dynamics of Heavy Trucks With the Perspective of Road Safety
,”
Veh. Syst. Dyn.
,
55
(
10
), pp.
1572
1617
.10.1080/00423114.2017.1319964
2.
Wang
,
Q.
, and
He
,
Y.
,
2016
, “
A Study on Single Lane-Change Maneuvers for Determining Rearward Amplification of Multi-Trailer Articulated Heavy Vehicles With Active Trailer Steering Systems
,”
Veh. Syst. Dyn.
,
54
(
1
), pp.
102
123
.10.1080/00423114.2015.1123280
3.
Yakub
,
F.
,
Abu
,
A.
, and
Mori
,
Y.
,
2017
, “
Enhancing the Yaw Stability and the Maneuverability of a Heavy Vehicle in Difficult Scenarios by an Emergency Threat Avoidance Maneuver
,”
Proc. Inst. Mech. Eng. Part D-J. Autom. Eng.
,
231
(
5
), pp.
615
637
.10.1177/0954407016658808
4.
Hwang
,
C. L.
,
Yang
,
C. C.
, and
Hung
,
J. Y.
,
2018
, “
Path Tracking of an Autonomous Ground Vehicle With Different Payloads by Hierarchical Improved Fuzzy Dynamic Sliding-Mode Control
,”
IEEE Trans. Fuzzy Syst.
,
26
(
2
), pp.
899
914
.10.1109/TFUZZ.2017.2698370
5.
Kayacan
,
E.
,
Kayacan
,
E.
,
Ramon
,
H.
, and
Saeys
,
W.
,
2015
, “
Robust Tube-Based Decentralized Nonlinear Model Predictive Control of an Autonomous Tractor-Trailer System
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
447
456
.10.1109/TMECH.2014.2334612
6.
Liu
,
Y.
,
Ji
,
X.
,
Yang
,
K.
,
He
,
X.
,
Na
,
X.
, and
Liu
,
Y.
,
2020
, “
Finite-Time Optimized Robust Control With Adaptive State Estimation Algorithm for Autonomous Heavy Vehicle
,”
Mech. Syst. Signal Proc.
,
139
, p.
106616
.10.1016/j.ymssp.2020.106616
7.
Tian
,
Y.
,
Huang
,
K.
,
Cao
,
X.
,
Liu
,
Y.
, and
Ji
,
X.
,
2020
, “
A Hierarchical Adaptive Control Framework of Path Tracking and Roll Stability for Intelligent Heavy Vehicle With MPC
,”
Proc. Inst. Mech. Eng. Part D-J. Autom. Eng.
,
234
(
13
), pp.
2933
2946
.10.1177/0954407020923260
8.
Liu
,
Y.
,
Xu
,
T.
,
Liu
,
Y.
, and
Ji
,
X.
,
2021
, “
Multi-Objective Seamless Self-Scheduling Controller Design for Heavy Commercial Vehicle Lateral Automation: An LPV/H Approach
,”
Int. J. Control Autom. Syst.
,
19
(
12
), pp.
4034
4045
.10.1007/s12555-020-0831-9
9.
He
,
X.
,
Liu
,
Y.
,
Yang
,
K.
,
Wu
,
J.
, and
Ji
,
X.
,
2018
, “
Robust Coordination Control of AFS and ARS for Autonomous Vehicle Path Tracking and Stability
,”
IEEE International Conference on Mechatronics and Automation
, Changchun, China, Aug. 5–8, pp.
924
929
.10.1109/ICMA.2018.8484617
10.
Zheng
,
H.
,
yangyang
,
m.
,
Wang
,
L.
, and
Zhang
,
J.
,
2018
, “
Comparison of Active Front Wheel Steering and Differential Braking for Yaw/Roll Stability Enhancement of a Coach
,”
SAE Int. J. Veh. Dyn., Stab.
,
2
(
4
), pp.
267
283
.10.4271/2018-01-0820
11.
Fors
,
V.
,
Anistratov
,
P.
,
Olofsson
,
B.
, and
Nielsen
,
L.
,
2021
, “
Predictive Force-Centric Emergency Collision Avoidance
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
8
), p.
081005
.10.1115/1.4050403
12.
Ni
,
J.
,
Hu
,
J.
, and
Xiang
,
C.
,
2017
, “
Envelope Control for Four-Wheel Independently Actuated Autonomous Ground Vehicle Through AFS/DYC Integrated Control
,”
IEEE Trans. Veh. Technol.
,
66
(
11
), pp.
9712
9726
.10.1109/TVT.2017.2723418
13.
Zhang
,
H.
, and
Wang
,
J.
,
2016
, “
Vehicle Lateral Dynamics Control Through AFS/DYC and Robust Gain-Scheduling Approach
,”
IEEE Trans. Veh. Technol.
,
65
(
1
), pp.
489
494
.10.1109/TVT.2015.2391184
14.
Zhang
,
B.
,
Zong
,
C.
,
Chen
,
G.
,
Huang
,
Y.
, and
Xu
,
T.
,
2019
, “
A Novel Integrated Stability Control Based on Differential Braking and Active Steering for Four-Axle Trucks
,”
Chin. J. Mech. Eng.
,
32
(
12
), pp. 1-21.10.1186/s10033-019-0323-0
15.
Zhao
,
J.
, and
Taheri
,
S.
,
2012
, “
A Multi-Objective LMI-Based Antiroll Control System
,”
SAE Int. J. Commer. Veh.
,
5
(
2
), pp.
421
428
.10.4271/2012-01-1904
16.
Lin
,
F.
,
Wang
,
S.
,
Zhao
,
Y.
, and
Cai
,
Y.
,
2021
, “
Research on Autonomous Vehicle Path Tracking Control Considering Roll Stability
,”
Proc. Inst. Mech. Eng. Part D-J. Autom. Eng.
,
235
(
1
), pp.
199
210
.10.1177/0954407020942006
17.
Yao
,
X.
,
Gu
,
X.
, and
Jiang
,
P.
,
2022
, “
Coordination Control of Active Front Steering and Direct Yaw Moment Control Based on Stability Judgment for AVs Stability Enhancement
,”
Proc. Inst. Mech. Eng. Part D-J. Autom. Eng.
,
236
(
1
), pp.
59
74
.10.1177/09544070211018104
18.
Wu
,
J.
,
Kong
,
Q.
,
Yang
,
K.
,
Liu
,
Y.
,
Cao
,
D.
, and
Li
,
Z.
,
2022
, “
Research on the Steering Torque Control for Intelligent Vehicles co-Driving With the Penalty Factor of Human-Machine Intervention
,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems
, epub, pp.
1
12
.10.1109/TSMC.2022.3166991
19.
Shuai
,
Z.
,
Zhang
,
H.
,
Wang
,
J.
,
Li
,
J.
, and
Ouyang
,
M.
,
2014
, “
Combined AFS and DYC Control of Four-Wheel-Independent-Drive Electric Vehicles Over CAN Network With Time-Varying Delays
,”
IEEE Trans. Veh. Technol.
,
63
(
2
), pp.
591
602
.10.1109/TVT.2013.2279843
20.
Huang
,
X.
,
Zhang
,
H.
,
Zhang
,
G.
, and
Wang
,
J.
,
2014
, “
Robust Weighted Gain-Scheduling H Vehicle Lateral Motion Control With Considerations of Steering System Backlash-Type Hysteresis
,”
IEEE Trans. Control Syst. Technol.
,
22
(
5
), pp.
1740
1753
.10.1109/TCST.2014.2317772
21.
Poussot-Vassal
,
C.
,
Sename
,
O.
,
Dugard
,
L.
, and
Savaresi
,
S. M.
,
2011
, “
Vehicle Dynamic Stability Improvements Through Gain-Scheduled Steering and Braking Control
,”
Veh. Syst. Dyn.
,
49
(
10
), pp.
1597
1621
.10.1080/00423114.2010.527995
22.
Doumiati
,
M.
,
Sename
,
O.
,
Dugard
,
L.
,
Martinez-Molina
,
J. J.
,
Gaspar
,
P.
, and
Szabo
,
Z.
,
2013
, “
Integrated Vehicle Dynamics Control Via Coordination of Active Front Steering and Rear Braking
,”
Eur. J. Control
,
19
(
2
), pp.
121
143
.10.1016/j.ejcon.2013.03.004
23.
Imine
,
H.
, and
Djema
,
M.
,
2016
, “
Switched Control for Reducing Impact of Vertical Forces on Road and Heavy Vehicle Rollover Avoidance
,”
IEEE Trans. Veh. Technol.
,
65
(
6
), pp.
4044
4052
.10.1109/TVT.2015.2470090
24.
Hingwe
,
P.
,
Wang
,
J. Y.
,
Tai
,
M.
, and
Tomizuka
,
M.
,
2003
, “
Lateral Control of Heavy Vehicles for Automated Systems: Final Report for MOU 313
,” University of California, Berkeley, CA, Report No. UCB-ITS-PRR-2003-10.
25.
Hingwe
,
P.
,
Tan
,
H. S.
,
Packard
,
A. K.
, and
Tomizuka
,
M.
,
2002
, “
Linear Parameter Varying Controller for Automated Lane Guidance Experimental Study on Tractor Semi-Trailers
,”
IEEE Trans. Control Syst. Technol.
,
10
(
6
), pp.
793
806
.10.1109/TCST.2002.804118
26.
PARK
,
J. H.
,
2001
, “
H Direct Yaw-Moment Control With Brakes for Robust Performance and Stability of Vehicles
,”
JSME Int. J. Ser. C-Mech. Syst. Mach. Elem. Manuf.
,
44
(
2
), pp.
404
413
.10.1299/jsmec.44.404
27.
Zeng
,
X.
,
Li
,
G.
,
Yin
,
G.
,
Song
,
D.
,
Sheng
,
L.
, and
Yang
,
N.
,
2018
, “
Model Predictive Control-Based Dynamic Coordinate Strategy for Hydraulic Hub-Motor Auxiliary System of a Heavy Commercial Vehicle
,”
Mech. Syst. Signal Proc.
,
101
(
15
), pp.
97
120
.10.1016/j.ymssp.2017.08.029
28.
Huang
,
H. H.
,
Yedavalli
,
R. K.
, and
Guenther
,
D. A.
,
2012
, “
Active Roll Control for Rollover Prevention of Heavy Articulated Vehicles With Multiple-Rollover-Index Minimization
,”
Veh. Syst. Dyn.
,
50
(
3
), pp.
471
493
.10.1080/00423114.2011.597863
29.
Solmaz
,
S.
,
Corless
,
M.
, and
Shorten
,
R.
,
2007
, “
A Methodology for the Design of Robust Rollover Prevention Controllers for Automotive Vehicles: Part 1-Differential Braking
,”
Int. J. Control
,
80
(
11
), pp.
1763
1779
.10.1080/00207170701473987
30.
Rajamani
,
R.
,
Piyabongkarn
,
D.
,
Tsourapas
,
V.
, and
Lew
,
J. Y.
,
2009
, “
Real-Time Estimation of Roll Angle and CG Height for Active Rollover Prevention Applications
,”
American Control Conference
, St. Louis, MO, June 10–12, pp.
433
438
.10.1109/ACC.2009.5160045
31.
Vargas-Meléndez
,
L.
,
Boada
,
B. L.
,
Boada
,
M. J. L.
,
Gauchía
,
A.
, and
Díaz
,
V.
,
2016
, “
A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation
,”
Sensors
,
16
(
9
), p.
1400
.10.3390/s16091400
32.
Poussot-Vassal
,
C.
,
Sename
,
O.
,
Fergani
,
S.
,
Doumiati
,
M.
, and
Dugard
,
L.
,
2013
,
Robust Control and Linear Parameter Varying Approaches: Application to Vehicle Dynamics
,
Springer
,
Berlin/Heidelberg, Germany
.
33.
Scherer
,
C.
,
1990
, “
The Riccati Inequality and State-Space H Optimal Control
,” Ph.D. thesis,
Julius Maximilians University Würzburg
,
Würzburg, Germany
.
34.
Xie
,
L.
,
1996
, “
Output Feedback H Control of Systems With Parameter Uncertainty
,”
Int. J. Control
,
63
(
4
), pp.
741
750
.10.1080/00207179608921866
35.
Palladino
,
L.
,
Duc
,
G.
, and
Pothin
,
R.
,
2005
, “
LPV Control for μ-Split Braking Assistance of a Road Vehicle
,”
Proceedings of the 44th IEEE Conference on Decision and Control
,
Seville, Spain
, Dec. 15, pp.
2664
2669
.
36.
Chilali
,
M.
,
Gahinet
,
P.
, and
Soberer
,
C.
,
1996
, “
Multi-Objective Output-Feedback Control Via LMI Optimization
,”
IEEE Trans. Autom. Control
,
29
(
7
), pp.
1691
1696
.10.1109/9.599969
You do not currently have access to this content.