Abstract

Connectivity and automated driving technologies have opened up new research directions in the energy management of vehicles which exploit look-ahead preview and enhance the situational awareness. Despite this advancement, the vehicle speed preview that can be obtained from vehicle-to-vehicle/infrastructure (V2V/I) communications is often limited to a relatively short time-horizon. The vehicular energy systems, specifically those of the electrified vehicles, consist of multiple interacting power and thermal subsystems that respond over different time-scales. Consequently, their optimal energy management can greatly benefit from long-term speed prediction beyond that available through V2V/I communications. Accurately extending the look-ahead preview, on the other hand, is fundamentally challenging due to the dynamic nature of the traffic environment. To address this challenge, we propose a data-driven multirange vehicle speed prediction strategy for arterial corridors with signalized intersections, providing the vehicle speed preview for three different ranges, i.e., short-, medium-, and long-range. The short-range preview is obtained by V2V/I communications. The medium-range preview is realized using a neural network (NN), while the long-range preview is predicted based on a Bayesian network (BN). The predictions are updated in real-time based on the current state of traffic and incorporated into a multihorizon model predictive control (MH-MPC) for integrated power and thermal management (iPTM) of connected vehicles. The results of design and evaluation of the performance of the proposed data-informed MH-MPC for iPTM of connected hybrid electric vehicles (HEVs) using traffic data for real-world city driving are reported.

References

1.
Vahidi
,
A.
, and
Sciarretta
,
A.
,
2018
, “
Energy Saving Potentials of Connected and Automated Vehicles
,”
Transp. Res. Part C: Emerging Technol.
,
95
, pp.
822
843
.10.1016/j.trc.2018.09.001
2.
Guanetti
,
J.
,
Kim
,
Y.
, and
Borrelli
,
F.
,
2018
, “
Control of Connected and Automated Vehicles: State of the Art and Future Challenges
,”
Annu. Rev. Control
,
45
, pp.
18
40
.10.1016/j.arcontrol.2018.04.011
3.
Amini
,
M.
,
Feng
,
Y.
,
Yang
,
Z.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2020
, “
Long-Term Vehicle Speed Prediction Via Historical Traffic Data Analysis for Improved Energy Efficiency of Connected Electric Vehicles
,”
Transp. Res. Rec.
,
2674
(
11
), pp.
17
29
.10.1177/0361198120941508
4.
Hu
,
Q.
,
Amini
,
M.
,
Feng
,
Y.
,
Yang
,
Z.
,
Wang
,
H.
,
Kolmanovsky
,
I.
,
Sun
,
J.
,
Wiese
,
A.
,
Qiu
,
Z.
, and
Seeds
,
J. B.
,
2020
, “
Engine and Aftertreatment Co-Optimization of Connected HEVs Via Multi-Range Vehicle Speed Planning and Prediction
,”
SAE
Technical Paper No. 2020-01-0590.10.4271/2020-01-0590
5.
Hu
,
Q.
,
Amini
,
M.
,
Wang
,
H.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2020
, “
Integrated Power and Thermal Management of Connected HEVs Via Multi-Horizon MPC
,”
ACC
,
Denver, CO
, pp.
3053
3058
.10.23919/ACC45564.2020.9147487
6.
Panwai
,
S.
, and
Dia
,
H.
,
2005
, “
Comparative Evaluation of Microscopic Car-Following Behavior
,”
IEEE Trans. Intell. Transp. Syst.
,
6
(
3
), pp.
314
325
.10.1109/TITS.2005.853705
7.
Lefèvre
,
S.
,
Sun
,
C.
,
Bajcsy
,
R.
, and
Laugier
,
C.
,
2014
, “
Comparison of Parametric and Non-Parametric Approaches for Vehicle Speed Prediction
,”
American Control Conference
, Portland, OR, pp.
3494
3499
.10.1109/ACC.2014.6858871
8.
Jing
,
J.
,
Kurt
,
A.
,
Ozatay
,
E.
,
Michelini
,
J.
,
Filev
,
D.
, and
Ozguner
,
U.
,
2015
, “
Vehicle Speed Prediction in a Convoy Using V2V Communication
,”
International Conference on Intelligent Transportation Systems
, Las Palmas de Gran Canaria, Spain, pp.
2861
2868
.10.1109/ITSC.2015.460
9.
Platho
,
M.
,
Groß
,
H.-M.
, and
Eggert
,
J.
,
2013
, “
Predicting Velocity Profiles of Road Users at Intersections Using Configurations
,”
Intelligent Vehicles Symposium (IV)
, Gold Coast City, Australia, pp.
945
951
.10.1109/IVS.2013.6629588
10.
Clark
,
S.
,
2003
, “
Traffic Prediction Using Multivariate Nonparametric Regression
,”
J. Transp. Eng.
,
129
(
2
), pp.
161
168
.10.1061/(ASCE)0733-947X(2003)129:2(161)
11.
Ma
,
X.
,
Tao
,
Z.
,
Wang
,
Y.
,
Yu
,
H.
, and
Wang
,
Y.
,
2015
, “
Long Short-Term Memory Neural Network for Traffic Speed Prediction Using Remote Microwave Sensor Data
,”
Transp. Res. Part C: Emerging Technol.
,
54
, pp.
187
197
.10.1016/j.trc.2015.03.014
12.
Fusco
,
G.
,
Colombaroni
,
C.
, and
Isaenko
,
N.
,
2016
, “
Short-Term Speed Predictions Exploiting Big Data on Large Urban Road Networks
,”
Transp. Res. Part C: Emerging Technol.
,
73
, pp.
183
201
.10.1016/j.trc.2016.10.019
13.
Jiang
,
X.
, and
Adeli
,
H.
,
2005
, “
Dynamic Wavelet Neural Network Model for Traffic Flow Forecasting
,”
J. Transp. Eng.
,
131
(
10
), pp.
771
779
.10.1061/(ASCE)0733-947X(2005)131:10(771)
14.
Vanajakshi
,
L.
, and
Rilett
,
L.
,
2004
, “
A Comparison of the Performance of Artificial Neural Networks and Support Vector Machines for the Prediction of Traffic Speed
,”
IEEE Intelligent Vehicles Symposium
, Parma, Italy, pp.
194
199
.10.1109/IVS.2004.1336380
15.
Zhang
,
Y.
, and
Xie
,
Y.
,
2007
, “
Forecasting of Short-Term Freeway Volume With V-Support Vector Machines
,”
Transp. Res. Rec.
,
2024
(
1
), pp.
92
99
.10.3141/2024-11
16.
Park
,
J.
,
Murphey
,
Y. L.
,
McGee
,
R.
,
Kristinsson
,
J.
,
Kuang
,
M. L.
, and
Phillips
,
A. M.
,
2014
, “
Intelligent Trip Modeling for the Prediction of an Origin–Destination Traveling Speed Profile
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
3
), pp.
1039
1053
.10.1109/TITS.2013.2294934
17.
Jiang
,
B.
, and
Fei
,
Y.
,
2017
, “
Vehicle Speed Prediction by Two-Level Data Driven Models in Vehicular Networks
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
7
), pp.
1793
1801
.10.1109/TITS.2016.2620498
18.
Park
,
J.
,
Murphey
,
Y. L.
,
Kristinsson
,
J.
,
McGee
,
R.
,
Kuang
,
M.
, and
Phillips
,
T.
,
2013
, “
Intelligent Speed Profile Prediction on Urban Traffic Networks With Machine Learning
,”
The 2013 International Joint Conference on Neural Networks
(
IJCNN
), Dallas, TX, pp.
1
7
.10.1109/IJCNN.2013.6707119
19.
Borhan
,
H.
,
Zhang
,
C.
,
Vahidi
,
A.
,
Phillips
,
A.
,
Kuang
,
M.
, and
Di Cairano
,
S.
,
2010
, “
Nonlinear Model Predictive Control for Power-Split Hybrid Electric Vehicles
,”
49th CDC
,
Atlanta, GA
, pp.
4890
4895
.10.1109/CDC.2010.5718075
20.
Di Cairano
,
S.
,
Bernardini
,
D.
,
Bemporad
,
A.
, and
Kolmanovsky
,
I.
,
2014
, “
Stochastic MPC With Learning for Driver-Predictive Vehicle Control and Its Application to HEV Energy Management
,”
IEEE Trans. Control Syst. Technol.
,
22
(
3
), pp.
1018
1031
.10.1109/TCST.2013.2272179
21.
Bichi
,
M.
,
Ripaccioli
,
G.
,
Di Cairano
,
S.
,
Bernardini
,
D.
,
Bemporad
,
A.
, and
Kolmanovsky
,
I.
,
2010
, “
Stochastic Model Predictive Control With Driver Behavior Learning for Improved Powertrain Control
,”
49th CDC
,
Atlanta, GA
, pp.
6077
6082
.10.1109/CDC.2010.5717791
22.
Borhan
,
H.
,
Vahidi
,
A.
,
Phillips
,
A.
,
Kuang
,
M.
,
Kolmanovsky
,
I.
, and
Di Cairano
,
S.
,
2012
, “
MPC-Based Energy Management of a Power-Split Hybrid Electric Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
593
603
.10.1109/TCST.2011.2134852
23.
Hemmati
,
S.
,
Doshi
,
N.
,
Hanover
,
D.
,
Morgan
,
C.
, and
Shahbakhti
,
M.
,
2021
, “
Integrated Cabin Heating and Powertrain Thermal Energy Management for a Connected Hybrid Electric Vehicle
,”
Appl. Energy
,
283
, p.
116353
.10.1016/j.apenergy.2020.116353
24.
PTV Group
,
2016
, “
PTV Vissim 9.0 User Manual
,”
PTV AG
,
Karlsruhe, Germany
.
25.
Yang
,
Z.
,
Feng
,
Y.
,
Gong
,
X.
,
Zhao
,
D.
, and
Sun
,
J.
,
2019
, “
Eco-Trajectory Planning With Consideration of Queue Along Congested Corridor for Hybrid Electric Vehicles
,”
Transp. Res. Rec.
,
2673
(
9
), pp.
277
286
.10.1177/0361198119845363
26.
Amini
,
M.
,
Gong
,
X.
,
Wang
,
H.
,
Feng
,
Y.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2019
, “
Sequential Optimization of Speed, Thermal Load, and Power Split in Connected HEVs
,”
ACC
,
Philadelphia, PA
, pp.
4614
4620
.https://arxiv.org/abs/1903.08561
27.
Moser
,
D.
,
Waschl
,
H.
,
Schmied
,
R.
,
Efendic
,
H.
, and
Del Re
,
L.
,
2015
, “
Short Term Prediction of a Vehicle's Velocity Trajectory Using ITS
,”
SAE Int. J. Passenger Cars: Electron. Electr. Syst.
,
8
(
2
), pp.
364
370
.10.4271/2015-01-0295
28.
Zeng
,
T.
,
Zhang
,
C.
,
Hao
,
D.
,
Cao
,
D.
,
Chen
,
J.
,
Chen
,
J.
, and
Li
,
J.
,
2020
, “
Data-Driven Approach for Short-Term Power Demand Prediction of Fuel Cell Hybrid Vehicles
,”
Energy
,
208
, p.
118319
.10.1016/j.energy.2020.118319
29.
Tang
,
X.
,
Jia
,
T.
,
Hu
,
X.
,
Huang
,
Y.
,
Deng
,
Z.
, and
Pu
,
H.
,
2021
, “
Naturalistic Data-Driven Predictive Energy Management for Plug-In Hybrid Electric Vehicles
,”
IEEE Trans. Transp. Electrif.
,
7
(
2
), pp.
497
508
.10.1109/TTE.2020.3025352
30.
Zhang
,
F.
,
Xi
,
J.
, and
Langari
,
R.
,
2017
, “
Real-Time Energy Management Strategy Based on Velocity Forecasts Using V2V and V2I Communications
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
2
), pp.
416
430
.10.1109/TITS.2016.2580318
31.
Sun
,
S.
,
Zhang
,
C.
, and
Yu
,
G.
,
2006
, “
A Bayesian Network Approach to Traffic Flow Forecasting
,”
IEEE Trans. Intell. Transp. Syst.
,
7
(
1
), pp.
124
132
.10.1109/TITS.2006.869623
32.
Jordan
,
M.
,
1998
,
Learning in Graphical Models
,
Springer
,
Dordrecht, The Netherlands
.
33.
Zidek
,
R.
,
Kolmanovsky
,
I.
, and
Bemporad
,
A.
,
2021
, “
Model Predictive Control for Drift Counteraction of Stochastic Constrained Linear Systems
,”
Automatica
,
123
, p.
109304
.10.1016/j.automatica.2020.109304
34.
Wang
,
P.
,
Deng
,
H.
,
Zhang
,
J.
,
Wang
,
L.
,
Zhang
,
M.
, and
Li
,
Y.
,
2021
, “
Model Predictive Control for Connected Vehicle Platoon Under Switching Communication Topology
,”
IEEE Trans. Intell. Transp. Syst.
, , pp.
1
14
.10.1109/TITS.2021.3073012
35.
Gong
,
X.
,
Wang
,
H.
,
Amini
,
M.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2019
, “
Integrated Optimization of Power Split, Engine Thermal Management, and Cabin Heating for Hybrid Electric Vehicles
,”
Third CCTA
,
Hong Kong, China
, pp.
567
572
.10.1109/CCTA.2019.8920605
36.
Kim
,
N.
, and
Rousseau
,
A.
,
2016
, “
Thermal Impact on the Control and the Efficiency of the 2010 Toyota Prius Hybrid Electric Vehicle
,”
Proc. Inst. Mech. Eng., Part D: J. Automob. Eng.
,
230
(
1
), pp.
82
92
.10.1177/0954407015580217
37.
Kim
,
N.
,
Rousseau
,
A.
,
Lee
,
D.
, and
Lohse-Busch
,
H.
,
2014
, “
Thermal Model Development and Validation for 2010 Toyota Prius
,”
SAE
Technical Paper No. 2014-01-1784.10.4271/2014-01-1784
38.
Docimo
,
D. J.
,
Kang
,
Z.
,
James
,
K. A.
, and
Alleyne
,
A. G.
,
2021
, “
Plant and Controller Optimization for Power and Energy Systems With Model Predictive Control
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
8
), p.
081009
.10.1115/1.4050399
39.
Hu
,
Q.
,
Amini
,
M. R.
,
Kolmanovsky
,
I.
,
Sun
,
J.
,
Wiese
,
A.
, and
Seeds
,
J. B.
,
2021
, “
Multihorizon Model Predictive Control: An Application to Integrated Power and Thermal Management of Connected Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
(in press).10.1109/TCST.2021.3091887
40.
Lodaya
,
D.
,
Zeman
,
J.
,
Okarmus
,
M.
,
Mohon
,
S.
,
Keller
,
P.
,
Shutty
,
J.
, and
Kondipati
,
N.
,
2020
, “
Optimization of Fuel Economy Using Optimal Controls on Regulatory and Real-World Driving Cycles
,”
SAE Int. J. Adv. Curr. Pract. Mobility
,
2
(
3
), pp.
1705
1716
.10.4271/2020-01-1007
41.
Hill
,
P.
,
1985
, “
Kernel Estimation of a Distribution Function
,”
Commun. Stat. - Theory Methods
,
14
(
3
), pp.
605
620
.10.1080/03610928508828937
You do not currently have access to this content.